52,95 €
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
52,95 €
Als Download kaufen
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
26 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Through integrated content, readers can explore fundamental concepts in data analysis while gaining hands-on experience with Python programming, ensuring a holistic understanding of theory and practical application in Python.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
Andere Kunden interessierten sich auch für
- Weiqi ZhangIntroduction to Quantitative Social Science with Python (eBook, ePUB)52,95 €
- Klaas SijtsmaNever Waste a Good Crisis (eBook, PDF)33,95 €
- John Tuhao ChenStatistical Prediction and Machine Learning (eBook, PDF)85,95 €
- Basilio de Braganca PereiraStatistical Learning Using Neural Networks (eBook, PDF)52,95 €
- Boris MirkinClustering (eBook, PDF)65,95 €
- Sujit SahuBayesian Modeling of Spatio-Temporal Data with R (eBook, PDF)48,95 €
- Yan LuR Companion for Sampling (eBook, PDF)30,95 €
-
-
-
Through integrated content, readers can explore fundamental concepts in data analysis while gaining hands-on experience with Python programming, ensuring a holistic understanding of theory and practical application in Python.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 356
- Erscheinungstermin: 1. November 2024
- Englisch
- ISBN-13: 9781040148310
- Artikelnr.: 72284460
- Verlag: Taylor & Francis
- Seitenzahl: 356
- Erscheinungstermin: 1. November 2024
- Englisch
- ISBN-13: 9781040148310
- Artikelnr.: 72284460
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Weiqi Zhang is an Associate Professor at Suffolk University. He teaches courses on political science and data analytics, and he is passionate about bridging social sciences and data science.
Dmitry Zinoviev is a Professor of Computer Science at Suffolk University. His academic interests include computer modeling and simulation, complex networks, and the integration of computational methods into traditionally non-quantitative fields such as the humanities and social sciences.
Dmitry Zinoviev is a Professor of Computer Science at Suffolk University. His academic interests include computer modeling and simulation, complex networks, and the integration of computational methods into traditionally non-quantitative fields such as the humanities and social sciences.
Part 1: "Executive Track" 1. Introduction to Data Analysis in Social
Science 2. Data Collection and Cleaning 3. Descriptive and Exploratory
Analysis 4. Causality and Hypothesis Testing 5. Linear Regression Analysis
6. Classification 7. Complex Network Analysis 8. Text As Data Part 2:
"Technical Track" 9. Python Programming Fundamentals 10. Data Collection
and Cleaning 11. Condition Checking and Descriptive and Exploratory
Analysis 12. Loops and Hypothesis Testing 13. User-Defined Functions and
Regression Analysis 14. Generators and Classification 15. More Generators
and Network Analysis 16. Sets. Text as Data Conclusion A. Solutions to
Select Exercises Bibliography
Science 2. Data Collection and Cleaning 3. Descriptive and Exploratory
Analysis 4. Causality and Hypothesis Testing 5. Linear Regression Analysis
6. Classification 7. Complex Network Analysis 8. Text As Data Part 2:
"Technical Track" 9. Python Programming Fundamentals 10. Data Collection
and Cleaning 11. Condition Checking and Descriptive and Exploratory
Analysis 12. Loops and Hypothesis Testing 13. User-Defined Functions and
Regression Analysis 14. Generators and Classification 15. More Generators
and Network Analysis 16. Sets. Text as Data Conclusion A. Solutions to
Select Exercises Bibliography
Part 1: "Executive Track" 1. Introduction to Data Analysis in Social Science 2. Data Collection and Cleaning 3. Descriptive and Exploratory Analysis 4. Causality and Hypothesis Testing 5. Linear Regression Analysis 6. Classification 7. Complex Network Analysis 8. Text As Data Part 2: "Technical Track" 9. Python Programming Fundamentals 10. Data Collection and Cleaning 11. Condition Checking and Descriptive and Exploratory Analysis 12. Loops and Hypothesis Testing 13. User-Defined Functions and Regression Analysis 14. Generators and Classification 15. More Generators and Network Analysis 16. Sets. Text as Data Conclusion A. Solutions to Select Exercises Bibliography
Part 1: "Executive Track" 1. Introduction to Data Analysis in Social
Science 2. Data Collection and Cleaning 3. Descriptive and Exploratory
Analysis 4. Causality and Hypothesis Testing 5. Linear Regression Analysis
6. Classification 7. Complex Network Analysis 8. Text As Data Part 2:
"Technical Track" 9. Python Programming Fundamentals 10. Data Collection
and Cleaning 11. Condition Checking and Descriptive and Exploratory
Analysis 12. Loops and Hypothesis Testing 13. User-Defined Functions and
Regression Analysis 14. Generators and Classification 15. More Generators
and Network Analysis 16. Sets. Text as Data Conclusion A. Solutions to
Select Exercises Bibliography
Science 2. Data Collection and Cleaning 3. Descriptive and Exploratory
Analysis 4. Causality and Hypothesis Testing 5. Linear Regression Analysis
6. Classification 7. Complex Network Analysis 8. Text As Data Part 2:
"Technical Track" 9. Python Programming Fundamentals 10. Data Collection
and Cleaning 11. Condition Checking and Descriptive and Exploratory
Analysis 12. Loops and Hypothesis Testing 13. User-Defined Functions and
Regression Analysis 14. Generators and Classification 15. More Generators
and Network Analysis 16. Sets. Text as Data Conclusion A. Solutions to
Select Exercises Bibliography
Part 1: "Executive Track" 1. Introduction to Data Analysis in Social Science 2. Data Collection and Cleaning 3. Descriptive and Exploratory Analysis 4. Causality and Hypothesis Testing 5. Linear Regression Analysis 6. Classification 7. Complex Network Analysis 8. Text As Data Part 2: "Technical Track" 9. Python Programming Fundamentals 10. Data Collection and Cleaning 11. Condition Checking and Descriptive and Exploratory Analysis 12. Loops and Hypothesis Testing 13. User-Defined Functions and Regression Analysis 14. Generators and Classification 15. More Generators and Network Analysis 16. Sets. Text as Data Conclusion A. Solutions to Select Exercises Bibliography