Introduction to Statistical Analysis of Laboratory Data (eBook, PDF)
Alle Infos zum eBook verschenken
Introduction to Statistical Analysis of Laboratory Data (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Introduction to Statistical Analysis of Laboratory Data presents a detailed discussion of important statistical concepts and methods of data presentation and analysis * Provides detailed discussions on statistical applications including a comprehensive package of statistical tools that are specific to the laboratory experiment process * Introduces terminology used in many applications such as the interpretation of assay design and validation as well as "fit for purpose" procedures including real world examples * Includes a rigorous review of statistical quality control procedures in laboratory…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 3.73MB
- Alfred BartolucciIntroduction to Statistical Analysis of Laboratory Data (eBook, ePUB)111,99 €
- David M. BliesnerLaboratory Control System Operations in a GMP Environment (eBook, PDF)126,99 €
- Thomas A. RatliffThe Laboratory Quality Assurance System (eBook, PDF)165,99 €
- Standard and Super-Resolution Bioimaging Data Analysis (eBook, PDF)80,99 €
- Pharmaceutical Quality by Design (eBook, PDF)77,99 €
- Kristin Ciriello PothierPersonalizing Precision Medicine (eBook, PDF)21,99 €
- ICH Quality Guidelines (eBook, PDF)311,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 256
- Erscheinungstermin: 2. November 2015
- Englisch
- ISBN-13: 9781118736838
- Artikelnr.: 44149891
- Verlag: John Wiley & Sons
- Seitenzahl: 256
- Erscheinungstermin: 2. November 2015
- Englisch
- ISBN-13: 9781118736838
- Artikelnr.: 44149891
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Acknowledgments xv
1 DESCRIPTIVE STATISTICS 1
1.1 Measures of Central Tendency 1
1.2 Measures of Variation 4
1.3 Laboratory Example 7
1.4 Putting it All Together 8
1.5 Summary 10
References 10
2 DISTRIBUTIONS AND HYPOTHESIS TESTING IN FORMAL STATISTICAL LABORATORY PROCEDURES 11
2.1 Introduction 11
2.2 Confidence Intervals 19
2.2.1 Confidence Interval (CI) for the Population Mean - The t-Distribution 20
2.2.2 Confidence Interval for the Variance and Standard Deviation 21
2.3 Inferential Statistics - Hypothesis Testing 23
2.3.1 t-Test for Means 25
2.3.2 Test for Variation: Coefficient of Variation (CV) 28
2.3.3 Two-Sample Test of the Population Means 29
2.3.4 One-Way Analysis of Variance (ANOVA) 34
2.3.5 Nonparametric Tests for Skewed Data 40
References 41
3 METHOD VALIDATION 43
3.1 Introduction 43
3.2 Accuracy 45
3.2.1 Method 1 45
3.2.2 Method 2 56
3.3 Brief Introduction to Bioassay 59
3.3.1 Direct Assay 59
3.3.2 Indirect Assay 61
3.4 Sensitivity, Specificity (Selectivity) 69
3.5 Method Validation and Method Agreement - Bland-Altman 73
References 76
4 METHODOLOGIES IN OUTLIER ANALYSIS 79
4.1 Introduction 79
4.2 Some Outlier Determination Techniques 80
4.2.1 Grubb Statistic 82
4.2.2 Other Forms of the Grubb Statistic 84
4.2.3 Studentized Range Statistic 85
4.2.4 Sequential Test of Many Outliers 86
4.2.5 Mahalanobis Distance Measure 88
4.2.6 Dixon Q-Test for a Single Outlier 91
4.2.7 The Box Plot 94
4.2.8 Median Absolute Deviation 95
4.3 Combined Method Comparison Outlier Analysis 96
4.3.1 Further Outlier Considerations 96
4.3.2 Combined Method Comparison Outlier Analysis - Refined Method Comparisons Using Bland - Altman 98
4.4 Some Consequences of Outlier Removal 103
4.5 Considering Outlier Variance 104
4.5.1 The Cochran C test 104
4.5.2 Cochran G Test 107
References 110
5 STATISTICAL PROCESS CONTROL 113
5.1 Introduction 113
5.2 Control Charts 115
5.2.1 Means (X-bar) Control Charts 117
5.2.2 Range Control Charts 122
5.2.3 The S-Chart 124
5.2.4 The Median Chart 126
5.2.5 Mean (X-bar) and S-Charts Based on the Median Absolute Deviation (MAD) 128
5.3 Capability Analysis 131
5.4 Capability Analysis - An Alternative Consideration 137
References 139
6 LIMITS OF CALIBRATION 141
6.1 Calibration: Limit Strategies for Laboratory Assay Data 141
6.1.1 Definition - Calibration 141
6.2 Limit Strategies 142
6.2.1 Example - Estimation of LoB and LoD for Drug Assay 142
6.2.2 LoQ Results 144
6.2.3 A Comparison of Empirical and Statistical Approaches to the LoD and LoQ 145
6.2.4 Example - LoD/LoQ, GC - MS Approach 145
6.2.5 LoD/LoQ, GC - MS Approach 146
6.2.6 Explanation of the Difficulty of the Statistical Methodology for the LoD and LoQ 147
6.2.7 Another LoQ Method 151
6.3 Method Detection Limits (EPA) 151
6.3.1 Method Detection Limits 151
6.3.2 Example - Atrazine by Gas Chromatography (GC) 152
6.3.3 LoD and LoQ Summary 153
6.4 Data Near the Detection Limits 154
6.4.1 Biased Estimators 154
6.4.2 Computing Some Statistics with t
Acknowledgments xv
1 DESCRIPTIVE STATISTICS 1
1.1 Measures of Central Tendency 1
1.2 Measures of Variation 4
1.3 Laboratory Example 7
1.4 Putting it All Together 8
1.5 Summary 10
References 10
2 DISTRIBUTIONS AND HYPOTHESIS TESTING IN FORMAL STATISTICAL LABORATORY PROCEDURES 11
2.1 Introduction 11
2.2 Confidence Intervals 19
2.2.1 Confidence Interval (CI) for the Population Mean - The t-Distribution 20
2.2.2 Confidence Interval for the Variance and Standard Deviation 21
2.3 Inferential Statistics - Hypothesis Testing 23
2.3.1 t-Test for Means 25
2.3.2 Test for Variation: Coefficient of Variation (CV) 28
2.3.3 Two-Sample Test of the Population Means 29
2.3.4 One-Way Analysis of Variance (ANOVA) 34
2.3.5 Nonparametric Tests for Skewed Data 40
References 41
3 METHOD VALIDATION 43
3.1 Introduction 43
3.2 Accuracy 45
3.2.1 Method 1 45
3.2.2 Method 2 56
3.3 Brief Introduction to Bioassay 59
3.3.1 Direct Assay 59
3.3.2 Indirect Assay 61
3.4 Sensitivity, Specificity (Selectivity) 69
3.5 Method Validation and Method Agreement - Bland-Altman 73
References 76
4 METHODOLOGIES IN OUTLIER ANALYSIS 79
4.1 Introduction 79
4.2 Some Outlier Determination Techniques 80
4.2.1 Grubb Statistic 82
4.2.2 Other Forms of the Grubb Statistic 84
4.2.3 Studentized Range Statistic 85
4.2.4 Sequential Test of Many Outliers 86
4.2.5 Mahalanobis Distance Measure 88
4.2.6 Dixon Q-Test for a Single Outlier 91
4.2.7 The Box Plot 94
4.2.8 Median Absolute Deviation 95
4.3 Combined Method Comparison Outlier Analysis 96
4.3.1 Further Outlier Considerations 96
4.3.2 Combined Method Comparison Outlier Analysis - Refined Method Comparisons Using Bland - Altman 98
4.4 Some Consequences of Outlier Removal 103
4.5 Considering Outlier Variance 104
4.5.1 The Cochran C test 104
4.5.2 Cochran G Test 107
References 110
5 STATISTICAL PROCESS CONTROL 113
5.1 Introduction 113
5.2 Control Charts 115
5.2.1 Means (X-bar) Control Charts 117
5.2.2 Range Control Charts 122
5.2.3 The S-Chart 124
5.2.4 The Median Chart 126
5.2.5 Mean (X-bar) and S-Charts Based on the Median Absolute Deviation (MAD) 128
5.3 Capability Analysis 131
5.4 Capability Analysis - An Alternative Consideration 137
References 139
6 LIMITS OF CALIBRATION 141
6.1 Calibration: Limit Strategies for Laboratory Assay Data 141
6.1.1 Definition - Calibration 141
6.2 Limit Strategies 142
6.2.1 Example - Estimation of LoB and LoD for Drug Assay 142
6.2.2 LoQ Results 144
6.2.3 A Comparison of Empirical and Statistical Approaches to the LoD and LoQ 145
6.2.4 Example - LoD/LoQ, GC - MS Approach 145
6.2.5 LoD/LoQ, GC - MS Approach 146
6.2.6 Explanation of the Difficulty of the Statistical Methodology for the LoD and LoQ 147
6.2.7 Another LoQ Method 151
6.3 Method Detection Limits (EPA) 151
6.3.1 Method Detection Limits 151
6.3.2 Example - Atrazine by Gas Chromatography (GC) 152
6.3.3 LoD and LoQ Summary 153
6.4 Data Near the Detection Limits 154
6.4.1 Biased Estimators 154
6.4.2 Computing Some Statistics with t