Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Introduction to the Theory of Optimization in Euclidean Space is intended to provide students with a robust introduction to optimization in Euclidean space, demonstrating the theoretical aspects of the subject whilst also providing clear proofs and applications.
Introduction to the Theory of Optimization in Euclidean Space is intended to provide students with a robust introduction to optimization in Euclidean space, demonstrating the theoretical aspects of the subject whilst also providing clear proofs and applications.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Samia Challal is an assistant professor of Mathematics at Glendon College, the bilingual campus of York University. Her research interests include, homogenization, optimization, free boundary problems, partial differential equations, and problems arising from mechanics.
Inhaltsangabe
1. Introduction. 1.1 Formulation of some optimization problems. 1.2 Particular subsets of Rn. 1.3 Functions of several variables. 2. Unconstrained Optimization. 2.1 Necessary condition. 2.2 Classification of local extreme points. 2.3 Convexity/concavity and global extreme points. 3. Constrained Optimization - Equality constraints. 3.1 Tangent plane. 3.2 Necessary condition for local extreme points-Equality constraints. 3.3 Classification of local extreme points-Equality constraints. 3.4 Global extreme points-Equality constraints. 4. Constrained Optimization - Inequality constraints. 4.1 Cone of feasible directions. 4.2 Necessary condition for local extreme points/Inequality constraints. 4.3 Classification of local extreme points-Inequality constraints. 4.4 Global extreme points-Inequality constraints. 4.5 Dependence on parameters.
1. Introduction. 1.1 Formulation of some optimization problems. 1.2 Particular subsets of Rn. 1.3 Functions of several variables. 2. Unconstrained Optimization. 2.1 Necessary condition. 2.2 Classification of local extreme points. 2.3 Convexity/concavity and global extreme points. 3. Constrained Optimization - Equality constraints. 3.1 Tangent plane. 3.2 Necessary condition for local extreme points-Equality constraints. 3.3 Classification of local extreme points-Equality constraints. 3.4 Global extreme points-Equality constraints. 4. Constrained Optimization - Inequality constraints. 4.1 Cone of feasible directions. 4.2 Necessary condition for local extreme points/Inequality constraints. 4.3 Classification of local extreme points-Inequality constraints. 4.4 Global extreme points-Inequality constraints. 4.5 Dependence on parameters.
1. Introduction. 1.1 Formulation of some optimization problems. 1.2 Particular subsets of Rn. 1.3 Functions of several variables. 2. Unconstrained Optimization. 2.1 Necessary condition. 2.2 Classification of local extreme points. 2.3 Convexity/concavity and global extreme points. 3. Constrained Optimization - Equality constraints. 3.1 Tangent plane. 3.2 Necessary condition for local extreme points-Equality constraints. 3.3 Classification of local extreme points-Equality constraints. 3.4 Global extreme points-Equality constraints. 4. Constrained Optimization - Inequality constraints. 4.1 Cone of feasible directions. 4.2 Necessary condition for local extreme points/Inequality constraints. 4.3 Classification of local extreme points-Inequality constraints. 4.4 Global extreme points-Inequality constraints. 4.5 Dependence on parameters.
1. Introduction. 1.1 Formulation of some optimization problems. 1.2 Particular subsets of Rn. 1.3 Functions of several variables. 2. Unconstrained Optimization. 2.1 Necessary condition. 2.2 Classification of local extreme points. 2.3 Convexity/concavity and global extreme points. 3. Constrained Optimization - Equality constraints. 3.1 Tangent plane. 3.2 Necessary condition for local extreme points-Equality constraints. 3.3 Classification of local extreme points-Equality constraints. 3.4 Global extreme points-Equality constraints. 4. Constrained Optimization - Inequality constraints. 4.1 Cone of feasible directions. 4.2 Necessary condition for local extreme points/Inequality constraints. 4.3 Classification of local extreme points-Inequality constraints. 4.4 Global extreme points-Inequality constraints. 4.5 Dependence on parameters.
Rezensionen
"This book fills in the gap between the advanced, theoretical books on abstract Hilbert spaces, and the more practical books intended for Engineers, where theorems lack proofs. The author presents many theorems, along with their proofs, in a simple way and provides many examples and graphical illustrations to allow students grasp the material in an easy and quick way."
-Professor Salim Aissa Salah Messaoudi, University of Sharjah, UAE
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826