Geoffrey C. Smith
Introductory Mathematics: Algebra and Analysis (eBook, PDF)
28,95 €
28,95 €
inkl. MwSt.
Sofort per Download lieferbar
14 °P sammeln
28,95 €
Als Download kaufen
28,95 €
inkl. MwSt.
Sofort per Download lieferbar
14 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
28,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
14 °P sammeln
Geoffrey C. Smith
Introductory Mathematics: Algebra and Analysis (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This text provides a lively introduction to pure mathematics. It begins with sets, functions and relations, proof by induction and contradiction, complex numbers, vectors and matrices, and provides a brief introduction to group theory. It moves onto analysis, providing a gentle introduction to epsilon-delta technology and finishes with continuity and functions. The book features numerous exercises of varying difficulty throughout the text.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 17.88MB
Andere Kunden interessierten sich auch für
- Benjamin FineThe Fundamental Theorem of Algebra (eBook, PDF)46,95 €
- Martin AignerProofs from THE BOOK (eBook, PDF)44,95 €
- P. R. HalmosFinite-Dimensional Vector Spaces (eBook, PDF)35,95 €
- Serge LangUndergraduate Algebra (eBook, PDF)48,95 €
- Serge LangUndergraduate Algebra (eBook, PDF)62,95 €
- William A. AdkinsAlgebra (eBook, PDF)53,95 €
- Robert J. ValenzaLinear Algebra (eBook, PDF)40,95 €
-
-
-
This text provides a lively introduction to pure mathematics. It begins with sets, functions and relations, proof by induction and contradiction, complex numbers, vectors and matrices, and provides a brief introduction to group theory. It moves onto analysis, providing a gentle introduction to epsilon-delta technology and finishes with continuity and functions. The book features numerous exercises of varying difficulty throughout the text.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer London
- Seitenzahl: 215
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781447106197
- Artikelnr.: 44058385
- Verlag: Springer London
- Seitenzahl: 215
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781447106197
- Artikelnr.: 44058385
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1. Sets, Functions and Relations.- 1.1 Sets.- 1.2 Subsets.- 1.3 Well-known Sets.- 1.4 Rationals, Reals and Pictures.- 1.5 Set Operations.- 1.6 Sets of Sets.- 1.7 Paradox.- 1.8 Set-theoretic Constructions.- 1.9 Notation.- 1.10 Venn Diagrams.- 1.11 Quantifiers and Negation.- 1.12 Informal Description of Maps.- 1.13 Injective, Surjective and Bijective Maps.- 1.14 Composition of Maps.- 1.15 Graphs and Respectability Reclaimed.- 1.16 Characterizing Bijections.- 1.17 Sets of Maps.- 1.18 Relations.- 1.19 Intervals.- 2. Proof.- 2.1 Induction.- 2.2 Complete Induction.- 2.3 Counter-examples and Contradictions.- 2.4 Method of Descent.- 2.5 Style.- 2.6 Implication.- 2.7 Double Implication.- 2.8 The Master Plan.- 3. Complex Numbers and Related Functions.- 3.1 Motivation.- 3.2 Creating the Complex Numbers.- 3.3 A Geometric Interpretation.- 3.4 Sine, Cosine and Polar Form.- 3.5 e.- 3.6 Hyperbolic Sine and Hyperbolic Cosine.- 3.7 Integration Tricks.- 3.8 Extracting Roots and Raising to Powers.- 3.9 Logarithm.- 3.10 Power Series.- 4. Vectors and Matrices.- 4.1 Row Vectors.- 4.2 Higher Dimensions.- 4.3 Vector Laws.- 4.4 Lengths and Angles.- 4.5 Position Vectors.- 4.6 Matrix Operations.- 4.7 Laws of Matrix Algebra.- 4.8 Identity Matrices and Inverses.- 4.9 Determinants.- 4.10 Geometry of Determinants.- 4.11 Linear Independence.- 4.12 Vector Spaces.- 4.13 Transposition.- 5. Group Theory.- 5.1 Permutations.- 5.2 Inverse Permutations.- 5.3 The Algebra of Permutations.- 5.4 The Order of a Permutation.- 5.5 Permutation Groups.- 5.6 Abstract Groups.- 5.7 Subgroups.- 5.8 Cosets.- 5.9 Cyclic Groups.- 5.10 Isomorphism.- 5.11 Homomorphism.- 6. Sequences and Series.- 6.1 Denary and Decimal Sequences.- 6.2 The Real Numbers.- 6.3 Notation for Sequences.- 6.4 Limits of Sequences.- 6.5 The CompletenessAxiom.- 6.6 Limits of Sequences Revisited.- 6.7 Series.- 7. Mathematical Analysis.- 7.1 Continuity.- 7.2 Limits.- 8. Creating the Real Numbers.- 8.1 Dedekind's Construction.- 8.2 Construction via Cauchy Sequences.- 8.3 A Sting in the Tail: p-adic numbers.- Further Reading.- Solutions.
1. Sets, Functions and Relations.- 1.1 Sets.- 1.2 Subsets.- 1.3 Well-known Sets.- 1.4 Rationals, Reals and Pictures.- 1.5 Set Operations.- 1.6 Sets of Sets.- 1.7 Paradox.- 1.8 Set-theoretic Constructions.- 1.9 Notation.- 1.10 Venn Diagrams.- 1.11 Quantifiers and Negation.- 1.12 Informal Description of Maps.- 1.13 Injective, Surjective and Bijective Maps.- 1.14 Composition of Maps.- 1.15 Graphs and Respectability Reclaimed.- 1.16 Characterizing Bijections.- 1.17 Sets of Maps.- 1.18 Relations.- 1.19 Intervals.- 2. Proof.- 2.1 Induction.- 2.2 Complete Induction.- 2.3 Counter-examples and Contradictions.- 2.4 Method of Descent.- 2.5 Style.- 2.6 Implication.- 2.7 Double Implication.- 2.8 The Master Plan.- 3. Complex Numbers and Related Functions.- 3.1 Motivation.- 3.2 Creating the Complex Numbers.- 3.3 A Geometric Interpretation.- 3.4 Sine, Cosine and Polar Form.- 3.5 e.- 3.6 Hyperbolic Sine and Hyperbolic Cosine.- 3.7 Integration Tricks.- 3.8 Extracting Roots and Raising to Powers.- 3.9 Logarithm.- 3.10 Power Series.- 4. Vectors and Matrices.- 4.1 Row Vectors.- 4.2 Higher Dimensions.- 4.3 Vector Laws.- 4.4 Lengths and Angles.- 4.5 Position Vectors.- 4.6 Matrix Operations.- 4.7 Laws of Matrix Algebra.- 4.8 Identity Matrices and Inverses.- 4.9 Determinants.- 4.10 Geometry of Determinants.- 4.11 Linear Independence.- 4.12 Vector Spaces.- 4.13 Transposition.- 5. Group Theory.- 5.1 Permutations.- 5.2 Inverse Permutations.- 5.3 The Algebra of Permutations.- 5.4 The Order of a Permutation.- 5.5 Permutation Groups.- 5.6 Abstract Groups.- 5.7 Subgroups.- 5.8 Cosets.- 5.9 Cyclic Groups.- 5.10 Isomorphism.- 5.11 Homomorphism.- 6. Sequences and Series.- 6.1 Denary and Decimal Sequences.- 6.2 The Real Numbers.- 6.3 Notation for Sequences.- 6.4 Limits of Sequences.- 6.5 The CompletenessAxiom.- 6.6 Limits of Sequences Revisited.- 6.7 Series.- 7. Mathematical Analysis.- 7.1 Continuity.- 7.2 Limits.- 8. Creating the Real Numbers.- 8.1 Dedekind's Construction.- 8.2 Construction via Cauchy Sequences.- 8.3 A Sting in the Tail: p-adic numbers.- Further Reading.- Solutions.