-23%11
40,95 €
53,49 €**
40,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
20 °P sammeln
-23%11
40,95 €
53,49 €**
40,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
20 °P sammeln
Als Download kaufen
53,49 €****
-23%11
40,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
20 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
53,49 €****
-23%11
40,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
20 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 40.48MB
Produktdetails
- Verlag: Vieweg+Teubner Verlag
- Seitenzahl: 274
- Erscheinungstermin: 13. März 2013
- Englisch
- ISBN-13: 9783322831033
- Artikelnr.: 54119808
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
I Principles of track creation.- 1 Irradiation technology.- 1.1 Radioactive sources.- 1.1.1 Nuclear reactors.- 1.1.2 Alpha and fission sources.- 1.2 Ion accelerators.- 1.2.1 Characteristic parameters of accelerators.- 1.2.2 Production of highly charged heavy ions.- 1.2.3 Ion deflection and focussing.- 1.2.4 Acceleration techniques.- 1.2.5 Behavior of ions at relativistic energies.- 1.3 Irradiation targets and equipment.- 1.3.1 Wide-beam irradiation devices.- 1.3.2 Scanning ion microbeams.- 1.4 Radiation safety.- 1.4.1 Handling of radioactive sources.- 1.4.2 Basics of sample activation by accelerated ions.- 2 Energy-loss phenomena.- 2.1 Energy-transfer to target electrons.- 2.1.1 Binary-encounter model.- 2.1.2 Impact parameter and scattering angle.- 2.1.3 Transferred kinetic energy.- 2.1.4 Energy-loss per unit length-of-path.- 2.1.5 Cut-off energy.- 2.1.6 Bohr's energy-loss relation.- 2.1.7 Charge-state of projectile-ion.- 2.1.8 Charge-corrected energy-loss relation.- 2.2 Secondary energy-loss effects.- 2.2.1 Energy-loss in multi-elemental targets.- 2.2.2 Energy-straggling and angular straggling.- 2.2.3 Energy-transfer to target nuclei.- 2.2.4 Calculation of ion range.- 3 Formation of the latent track.- 3.1 Track core - atomic defects.- 3.1.1 Coulomb explosion model.- 3.1.2 Atomic collision-cascade.- 3.1.3 Thermal-spike model.- 3.1.4 Resulting primary defects.- 3.1.5 Diffusion and relaxation of defects.- 3.2 Track halo - electronic defects.- 3.2.1 Electron emission from ion trajectory.- 3.2.2 Secondary-electron collision-cascade.- 3.2.3 Translation of deposited energy into effect.- 4 Development of ion tracks.- 4.1 Nucleation of a new phase.- 4.1.1 Origin of phases.- 4.1.2 Basic theory of interface energy.- 4.1.3 Condition for grain growth.- 4.1.4 Formation of condensation nuclei.- 4.2 Track response function.- 4.2.1 Track etch threshold.- 4.2.2 Track sensitization and annealing.- 4.3 Shape of etched tracks.- 4.3.1 Primary factors in track etching.- 4.3.2 Fick's first diffusion law.- 4.3.3 Calculation of track shapes.- 4.3.4 Tracks in crystals.- 5 Observation of ion tracks.- 5.1 Microscopic observations.- 5.1.1 Optical microscope.- 5.1.2 Scanning electron microscope.- 5.1.3 Transmission electron microscope.- 5.2 Diffraction techniques.- 5.2.1 Basic principles.- 5.2.2 Small-angle scattering.- 5.2.3 X ray topography.- 5.3 Auxiliary techniques.- 5.3.1 Electron spin resonance.- 5.3.2 Electrical observations.- 5.3.3 Gas-permeation.- 5.3.4 Mechanical observations.- 6 Resulting structures.- 6.1 Fundamental shapes of etched tracks.- 6.1.1 Single-ion tracks.- 6.1.2 Non-overlapping tracks.- 6.1.3 Overlapping tracks.- 6.1.4 Further possibilities.- 6.2 Stochastic track patterns.- 6.2.1 Two-dimensional track overlap.- 6.2.2 Three-dimensional track overlap.- II Track applications.- 7 Single-ion tracks.- 7.1 Number, size, and deformability of particles.- 7.1.1 Basic relations.- 7.1.2 Resistive pulse technique.- 7.1.3 Deformability and interface energy.- 7.1.4 Red blood cell deformability.- 7.1.5 Suggested pore shapes.- 7.2 Single-pores and super fluidity.- 7.2.1 Basic phenomena.- 7.2.2 Basic relations.- 7.2.3 Flow through a single pore.- 7.2.4 Suggested shapes of weak links.- 8 Multiple ion tracks.- 8.1 Enhanced diffusion.- 8.1.1 Diffusion equations.- 8.1.2 Electric analogue of diffusion equations.- 8.1.3 Solution of dynamic diffusion equation.- 8.1.4 Connected-cavity model.- 8.1.5 Gas permeation through latent tracks.- 8.2 Membrane technology.- 8.2.1 Ion track filters.- 8.2.2 Prospects of track membranes.- 9 Bulk properties.- 9.1 Adjusting magnetic properties.- 9.1.1 Magnetic properties of matter.- 9.1.2 Matrix model of magneto-optic films.- 9.1.3 Experimental results.- 9.1.5 Generation of anisotropy.- 10 Growth areas.- 10.1 Ion lithography.- 10.1.1 Basic techniques in lithography.- 10.1.2 Ion lithographic techniques.- 10.2 Surface texture.- 10.2.1 Light scattering devices.- 10.2.2 Antireflection treatment.- 10.2.3 Further possibilities.- Concluding remarks.- Definitions and units.- List of symbols.I Principles of track creation.- 1 Irradiation technology.- 1.1 Radioactive sources.- 1.1.1 Nuclear reactors.- 1.1.2 Alpha and fission sources.- 1.2 Ion accelerators.- 1.2.1 Characteristic parameters of accelerators.- 1.2.2 Production of highly charged heavy ions.- 1.2.3 Ion deflection and focussing.- 1.2.4 Acceleration techniques.- 1.2.5 Behavior of ions at relativistic energies.- 1.3 Irradiation targets and equipment.- 1.3.1 Wide-beam irradiation devices.- 1.3.2 Scanning ion microbeams.- 1.4 Radiation safety.- 1.4.1 Handling of radioactive sources.- 1.4.2 Basics of sample activation by accelerated ions.- 2 Energy-loss phenomena.- 2.1 Energy-transfer to target electrons.- 2.1.1 Binary-encounter model.- 2.1.2 Impact parameter and scattering angle.- 2.1.3 Transferred kinetic energy.- 2.1.4 Energy-loss per unit length-of-path.- 2.1.5 Cut-off energy.- 2.1.6 Bohr's energy-loss relation.- 2.1.7 Charge-state of projectile-ion.- 2.1.8 Charge-corrected energy-loss relation.- 2.2 Secondary energy-loss effects.- 2.2.1 Energy-loss in multi-elemental targets.- 2.2.2 Energy-straggling and angular straggling.- 2.2.3 Energy-transfer to target nuclei.- 2.2.4 Calculation of ion range.- 3 Formation of the latent track.- 3.1 Track core - atomic defects.- 3.1.1 Coulomb explosion model.- 3.1.2 Atomic collision-cascade.- 3.1.3 Thermal-spike model.- 3.1.4 Resulting primary defects.- 3.1.5 Diffusion and relaxation of defects.- 3.2 Track halo - electronic defects.- 3.2.1 Electron emission from ion trajectory.- 3.2.2 Secondary-electron collision-cascade.- 3.2.3 Translation of deposited energy into effect.- 4 Development of ion tracks.- 4.1 Nucleation of a new phase.- 4.1.1 Origin of phases.- 4.1.2 Basic theory of interface energy.- 4.1.3 Condition for grain growth.- 4.1.4 Formation of condensation nuclei.- 4.2 Track response function.- 4.2.1 Track etch threshold.- 4.2.2 Track sensitization and annealing.- 4.3 Shape of etched tracks.- 4.3.1 Primary factors in track etching.- 4.3.2 Fick's first diffusion law.- 4.3.3 Calculation of track shapes.- 4.3.4 Tracks in crystals.- 5 Observation of ion tracks.- 5.1 Microscopic observations.- 5.1.1 Optical microscope.- 5.1.2 Scanning electron microscope.- 5.1.3 Transmission electron microscope.- 5.2 Diffraction techniques.- 5.2.1 Basic principles.- 5.2.2 Small-angle scattering.- 5.2.3 X ray topography.- 5.3 Auxiliary techniques.- 5.3.1 Electron spin resonance.- 5.3.2 Electrical observations.- 5.3.3 Gas-permeation.- 5.3.4 Mechanical observations.- 6 Resulting structures.- 6.1 Fundamental shapes of etched tracks.- 6.1.1 Single-ion tracks.- 6.1.2 Non-overlapping tracks.- 6.1.3 Overlapping tracks.- 6.1.4 Further possibilities.- 6.2 Stochastic track patterns.- 6.2.1 Two-dimensional track overlap.- 6.2.2 Three-dimensional track overlap.- II Track applications.- 7 Single-ion tracks.- 7.1 Number, size, and deformability of particles.- 7.1.1 Basic relations.- 7.1.2 Resistive pulse technique.- 7.1.3 Deformability and interface energy.- 7.1.4 Red blood cell deformability.- 7.1.5 Suggested pore shapes.- 7.2 Single-pores and super fluidity.- 7.2.1 Basic phenomena.- 7.2.2 Basic relations.- 7.2.3 Flow through a single pore.- 7.2.4 Suggested shapes of weak links.- 8 Multiple ion tracks.- 8.1 Enhanced diffusion.- 8.1.1 Diffusion equations.- 8.1.2 Electric analogue of diffusion equations.- 8.1.3 Solution of dynamic diffusion equation.- 8.1.4 Connected-cavity model.- 8.1.5 Gas permeation through latent tracks.- 8.2 Membrane technology.- 8.2.1 Ion track filters.- 8.2.2 Prospects of track membranes.- 9 Bulk properties.- 9.1 Adjusting magnetic properties.- 9.1.1 Magnetic properties of matter.- 9.1.2 Matrix model of magneto-optic films.- 9.1.3 Experimental results.- 9.1.5 Generation of anisotropy.- 10 Growth areas.- 10.1 Ion lithography.- 10.1.1 Basic techniques in lithography.- 10.1.2 Ion lithographic techniques.- 10.2 Surface texture.- 10.2.1 Light scattering devices.- 10.2.2 Antireflection treatment.- 10.2.3 Further possibilities.
I Principles of track creation.- 1 Irradiation technology.- 1.1 Radioactive sources.- 1.1.1 Nuclear reactors.- 1.1.2 Alpha and fission sources.- 1.2 Ion accelerators.- 1.2.1 Characteristic parameters of accelerators.- 1.2.2 Production of highly charged heavy ions.- 1.2.3 Ion deflection and focussing.- 1.2.4 Acceleration techniques.- 1.2.5 Behavior of ions at relativistic energies.- 1.3 Irradiation targets and equipment.- 1.3.1 Wide-beam irradiation devices.- 1.3.2 Scanning ion microbeams.- 1.4 Radiation safety.- 1.4.1 Handling of radioactive sources.- 1.4.2 Basics of sample activation by accelerated ions.- 2 Energy-loss phenomena.- 2.1 Energy-transfer to target electrons.- 2.1.1 Binary-encounter model.- 2.1.2 Impact parameter and scattering angle.- 2.1.3 Transferred kinetic energy.- 2.1.4 Energy-loss per unit length-of-path.- 2.1.5 Cut-off energy.- 2.1.6 Bohr's energy-loss relation.- 2.1.7 Charge-state of projectile-ion.- 2.1.8 Charge-corrected energy-loss relation.- 2.2 Secondary energy-loss effects.- 2.2.1 Energy-loss in multi-elemental targets.- 2.2.2 Energy-straggling and angular straggling.- 2.2.3 Energy-transfer to target nuclei.- 2.2.4 Calculation of ion range.- 3 Formation of the latent track.- 3.1 Track core - atomic defects.- 3.1.1 Coulomb explosion model.- 3.1.2 Atomic collision-cascade.- 3.1.3 Thermal-spike model.- 3.1.4 Resulting primary defects.- 3.1.5 Diffusion and relaxation of defects.- 3.2 Track halo - electronic defects.- 3.2.1 Electron emission from ion trajectory.- 3.2.2 Secondary-electron collision-cascade.- 3.2.3 Translation of deposited energy into effect.- 4 Development of ion tracks.- 4.1 Nucleation of a new phase.- 4.1.1 Origin of phases.- 4.1.2 Basic theory of interface energy.- 4.1.3 Condition for grain growth.- 4.1.4 Formation of condensation nuclei.- 4.2 Track response function.- 4.2.1 Track etch threshold.- 4.2.2 Track sensitization and annealing.- 4.3 Shape of etched tracks.- 4.3.1 Primary factors in track etching.- 4.3.2 Fick's first diffusion law.- 4.3.3 Calculation of track shapes.- 4.3.4 Tracks in crystals.- 5 Observation of ion tracks.- 5.1 Microscopic observations.- 5.1.1 Optical microscope.- 5.1.2 Scanning electron microscope.- 5.1.3 Transmission electron microscope.- 5.2 Diffraction techniques.- 5.2.1 Basic principles.- 5.2.2 Small-angle scattering.- 5.2.3 X ray topography.- 5.3 Auxiliary techniques.- 5.3.1 Electron spin resonance.- 5.3.2 Electrical observations.- 5.3.3 Gas-permeation.- 5.3.4 Mechanical observations.- 6 Resulting structures.- 6.1 Fundamental shapes of etched tracks.- 6.1.1 Single-ion tracks.- 6.1.2 Non-overlapping tracks.- 6.1.3 Overlapping tracks.- 6.1.4 Further possibilities.- 6.2 Stochastic track patterns.- 6.2.1 Two-dimensional track overlap.- 6.2.2 Three-dimensional track overlap.- II Track applications.- 7 Single-ion tracks.- 7.1 Number, size, and deformability of particles.- 7.1.1 Basic relations.- 7.1.2 Resistive pulse technique.- 7.1.3 Deformability and interface energy.- 7.1.4 Red blood cell deformability.- 7.1.5 Suggested pore shapes.- 7.2 Single-pores and super fluidity.- 7.2.1 Basic phenomena.- 7.2.2 Basic relations.- 7.2.3 Flow through a single pore.- 7.2.4 Suggested shapes of weak links.- 8 Multiple ion tracks.- 8.1 Enhanced diffusion.- 8.1.1 Diffusion equations.- 8.1.2 Electric analogue of diffusion equations.- 8.1.3 Solution of dynamic diffusion equation.- 8.1.4 Connected-cavity model.- 8.1.5 Gas permeation through latent tracks.- 8.2 Membrane technology.- 8.2.1 Ion track filters.- 8.2.2 Prospects of track membranes.- 9 Bulk properties.- 9.1 Adjusting magnetic properties.- 9.1.1 Magnetic properties of matter.- 9.1.2 Matrix model of magneto-optic films.- 9.1.3 Experimental results.- 9.1.5 Generation of anisotropy.- 10 Growth areas.- 10.1 Ion lithography.- 10.1.1 Basic techniques in lithography.- 10.1.2 Ion lithographic techniques.- 10.2 Surface texture.- 10.2.1 Light scattering devices.- 10.2.2 Antireflection treatment.- 10.2.3 Further possibilities.- Concluding remarks.- Definitions and units.- List of symbols.I Principles of track creation.- 1 Irradiation technology.- 1.1 Radioactive sources.- 1.1.1 Nuclear reactors.- 1.1.2 Alpha and fission sources.- 1.2 Ion accelerators.- 1.2.1 Characteristic parameters of accelerators.- 1.2.2 Production of highly charged heavy ions.- 1.2.3 Ion deflection and focussing.- 1.2.4 Acceleration techniques.- 1.2.5 Behavior of ions at relativistic energies.- 1.3 Irradiation targets and equipment.- 1.3.1 Wide-beam irradiation devices.- 1.3.2 Scanning ion microbeams.- 1.4 Radiation safety.- 1.4.1 Handling of radioactive sources.- 1.4.2 Basics of sample activation by accelerated ions.- 2 Energy-loss phenomena.- 2.1 Energy-transfer to target electrons.- 2.1.1 Binary-encounter model.- 2.1.2 Impact parameter and scattering angle.- 2.1.3 Transferred kinetic energy.- 2.1.4 Energy-loss per unit length-of-path.- 2.1.5 Cut-off energy.- 2.1.6 Bohr's energy-loss relation.- 2.1.7 Charge-state of projectile-ion.- 2.1.8 Charge-corrected energy-loss relation.- 2.2 Secondary energy-loss effects.- 2.2.1 Energy-loss in multi-elemental targets.- 2.2.2 Energy-straggling and angular straggling.- 2.2.3 Energy-transfer to target nuclei.- 2.2.4 Calculation of ion range.- 3 Formation of the latent track.- 3.1 Track core - atomic defects.- 3.1.1 Coulomb explosion model.- 3.1.2 Atomic collision-cascade.- 3.1.3 Thermal-spike model.- 3.1.4 Resulting primary defects.- 3.1.5 Diffusion and relaxation of defects.- 3.2 Track halo - electronic defects.- 3.2.1 Electron emission from ion trajectory.- 3.2.2 Secondary-electron collision-cascade.- 3.2.3 Translation of deposited energy into effect.- 4 Development of ion tracks.- 4.1 Nucleation of a new phase.- 4.1.1 Origin of phases.- 4.1.2 Basic theory of interface energy.- 4.1.3 Condition for grain growth.- 4.1.4 Formation of condensation nuclei.- 4.2 Track response function.- 4.2.1 Track etch threshold.- 4.2.2 Track sensitization and annealing.- 4.3 Shape of etched tracks.- 4.3.1 Primary factors in track etching.- 4.3.2 Fick's first diffusion law.- 4.3.3 Calculation of track shapes.- 4.3.4 Tracks in crystals.- 5 Observation of ion tracks.- 5.1 Microscopic observations.- 5.1.1 Optical microscope.- 5.1.2 Scanning electron microscope.- 5.1.3 Transmission electron microscope.- 5.2 Diffraction techniques.- 5.2.1 Basic principles.- 5.2.2 Small-angle scattering.- 5.2.3 X ray topography.- 5.3 Auxiliary techniques.- 5.3.1 Electron spin resonance.- 5.3.2 Electrical observations.- 5.3.3 Gas-permeation.- 5.3.4 Mechanical observations.- 6 Resulting structures.- 6.1 Fundamental shapes of etched tracks.- 6.1.1 Single-ion tracks.- 6.1.2 Non-overlapping tracks.- 6.1.3 Overlapping tracks.- 6.1.4 Further possibilities.- 6.2 Stochastic track patterns.- 6.2.1 Two-dimensional track overlap.- 6.2.2 Three-dimensional track overlap.- II Track applications.- 7 Single-ion tracks.- 7.1 Number, size, and deformability of particles.- 7.1.1 Basic relations.- 7.1.2 Resistive pulse technique.- 7.1.3 Deformability and interface energy.- 7.1.4 Red blood cell deformability.- 7.1.5 Suggested pore shapes.- 7.2 Single-pores and super fluidity.- 7.2.1 Basic phenomena.- 7.2.2 Basic relations.- 7.2.3 Flow through a single pore.- 7.2.4 Suggested shapes of weak links.- 8 Multiple ion tracks.- 8.1 Enhanced diffusion.- 8.1.1 Diffusion equations.- 8.1.2 Electric analogue of diffusion equations.- 8.1.3 Solution of dynamic diffusion equation.- 8.1.4 Connected-cavity model.- 8.1.5 Gas permeation through latent tracks.- 8.2 Membrane technology.- 8.2.1 Ion track filters.- 8.2.2 Prospects of track membranes.- 9 Bulk properties.- 9.1 Adjusting magnetic properties.- 9.1.1 Magnetic properties of matter.- 9.1.2 Matrix model of magneto-optic films.- 9.1.3 Experimental results.- 9.1.5 Generation of anisotropy.- 10 Growth areas.- 10.1 Ion lithography.- 10.1.1 Basic techniques in lithography.- 10.1.2 Ion lithographic techniques.- 10.2 Surface texture.- 10.2.1 Light scattering devices.- 10.2.2 Antireflection treatment.- 10.2.3 Further possibilities.