IoT for Smart Grid (eBook, ePUB)
Revolutionizing Electrical Engineering
Redaktion: Zahira, Rahiman; Padmanaban, Sanjeevikumar; Sharmeela, Chenniappan; Sivaraman, Palanisamy
123,99 €
123,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
123,99 €
Als Download kaufen
123,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
123,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
IoT for Smart Grid (eBook, ePUB)
Revolutionizing Electrical Engineering
Redaktion: Zahira, Rahiman; Padmanaban, Sanjeevikumar; Sharmeela, Chenniappan; Sivaraman, Palanisamy
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Expert guidance on technologies to build the Internet of Things (IoT) from electrical engineering and power industry perspectives
IoT for Smart Grid presents advanced Internet of Things (IoT) technologies that are utilized in various aspects of smart electrical systems, especially monitoring, diagnosis, automation, and industrial evolution, from the point of view of both electrical engineering and power industry facilities and resources.
The book describes how IoT has expanded the use of wireless sensor networks (WSN) to play a vital role in connecting power industry facilities and…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 27.23MB
Andere Kunden interessierten sich auch für
- Feng YeSmart Grid Communication Infrastructures (eBook, ePUB)103,99 €
- James MomohEnergy Processing and Smart Grid (eBook, ePUB)103,99 €
- Integration of Renewable Energy Sources with Smart Grid (eBook, ePUB)190,99 €
- Shady S. RefaatSmart Grid and Enabling Technologies (eBook, ePUB)104,99 €
- Alberto SendinSmart Grid Telecommunications (eBook, ePUB)137,99 €
- Qi HuangInnovative Testing and Measurement Solutions for Smart Grid (eBook, ePUB)123,99 €
- Guangyu WangTechnology, Manufacturing and Grid Connection of Photovoltaic Solar Cells (eBook, ePUB)123,99 €
-
-
-
Expert guidance on technologies to build the Internet of Things (IoT) from electrical engineering and power industry perspectives
IoT for Smart Grid presents advanced Internet of Things (IoT) technologies that are utilized in various aspects of smart electrical systems, especially monitoring, diagnosis, automation, and industrial evolution, from the point of view of both electrical engineering and power industry facilities and resources.
The book describes how IoT has expanded the use of wireless sensor networks (WSN) to play a vital role in connecting power industry facilities and resources to reduce energy consumption and costs. It also explores concepts of e-mobility that include smart parking, vehicle monitoring, and charging, and considers future challenges such as security and privacy concerns in transactive systems and scalability and standardization issues.
Later chapters describe communication protocols for transactive IoT, smart grid integration, cybersecurity challenges, smart energy management, and more. Relevant examples and practical case studies are included to enrich and reinforce learning.
Edited by a team of highly qualified professionals in the field, IoT for Smart Grid explores additional topics such as:
IoT for Smart Grid is a definitive reference for identifying and applying advanced technologies and concepts and a highly valuable learning resource for students, researchers, consultants, and utility engineers in the design, use, and maintenance of electrical power systems.
IoT for Smart Grid presents advanced Internet of Things (IoT) technologies that are utilized in various aspects of smart electrical systems, especially monitoring, diagnosis, automation, and industrial evolution, from the point of view of both electrical engineering and power industry facilities and resources.
The book describes how IoT has expanded the use of wireless sensor networks (WSN) to play a vital role in connecting power industry facilities and resources to reduce energy consumption and costs. It also explores concepts of e-mobility that include smart parking, vehicle monitoring, and charging, and considers future challenges such as security and privacy concerns in transactive systems and scalability and standardization issues.
Later chapters describe communication protocols for transactive IoT, smart grid integration, cybersecurity challenges, smart energy management, and more. Relevant examples and practical case studies are included to enrich and reinforce learning.
Edited by a team of highly qualified professionals in the field, IoT for Smart Grid explores additional topics such as:
- MQTT, CoAP, and other protocols in transactive systems and WSN diagnostic tools for ensuring reliability and performance
- The role of sensors and actuators in transactive models and significance of transactive IoT in modern applications
- Remote control and automation in smart grids, utilizing IoT for demand response programs, load shifting strategies, and dynamic pricing models and IoT integration
IoT for Smart Grid is a definitive reference for identifying and applying advanced technologies and concepts and a highly valuable learning resource for students, researchers, consultants, and utility engineers in the design, use, and maintenance of electrical power systems.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in D ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 827
- Erscheinungstermin: 10. Februar 2025
- Englisch
- ISBN-13: 9781394279388
- Artikelnr.: 73344481
- Verlag: John Wiley & Sons
- Seitenzahl: 827
- Erscheinungstermin: 10. Februar 2025
- Englisch
- ISBN-13: 9781394279388
- Artikelnr.: 73344481
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Rahiman Zahira, PhD, SMIEEE, is an Associate Professor at B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India. Palanisamy Sivaraman, SMIEEE, is a Research Scholar at Anna University, Chennai, India. Chenniappan Sharmeela, PhD, SMIEEE, is a Professor, DEEE, and an Adjunct Professor with the Centre for E-Vehicle Technologies and the Centre for Energy Storage Technology, CEG campus, at Anna University, Chennai, India. Sanjeevikumar Padmanaban, PhD, SMIEEE, is a Full Professor in Power Electronics with the Department of Electrical Engineering, IT and Cybernetics at the University of South-Eastern Norway, Norway.
About the Editors xxvii
List of Contributors xxxi
1 Introduction to the Internet of Things 1
Anbazhagan Lavanya, Jayachandran Divya Navamani, and Rahiman Zahira
1.1 Introduction 1
1.2 Evolution of IoT 2
1.3 Need for IoT 3
1.4 Energy Management 4
1.5 Main Components Used in IoT 5
1.6 IoT Devices 6
1.7 IoT Characteristics 7
1.8 IoT Market Share 11
1.9 Conclusion 14
References 15
2 IoT Fundamentals: Platforms, Architectures, and Sensor Technologies 17
Naseer Ahamed Javed, Yogesh Rajkumar, and Kallankurichy P. Kaliyamurthie
2.1 Introduction 17
2.2 Overview of IoT System Architectures and Design Principles 17
2.3 Exploring IoT/M2M Systems and Their Role in Connectivity 23
2.4 Introduction to Sensors and Transducers in IoT 25
2.5 LoWPAN Network Management Protocol (LNMP) 27
2.6 WSN Diagnostic Tools: Ensuring Reliability and Performance 29
2.7 Overview of IoT Communication Technologies 31
2.8 Practical Applications of IoT Platforms, Sensor Technologies and
Communication Protocols 34
References 40
3 Communication Protocols for Transactive IoT 43
A. Kamalasegaran, G. Kabilan, and P. Sriramalakshmi
3.1 Introduction 43
3.2 Transactive Systems in Smart Grids 43
3.3 MQTT, CoAP, and Other Protocols in Transactive Systems 45
3.4 Data Distribution Service (DDS) 49
3.5 Edge Computing and Real-Time Implementation 50
3.6 Reliability and Scalability 54
3.7 Case Studies and Real-Life Implementations 57
3.8 Conclusion 58
References 59
4 Transactive IoT: Merging Transactions and Connectivity 63
Burhan Khan, Aabid A. Mir, Naser S. Almutairi, and Khang W. Goh
4.1 Introduction 63
4.2 IoT Integration with Transactive Models 64
4.3 Transactive IoT in Modern Applications 66
4.4 Economic and Market-Based Approaches 71
4.5 Transactive IoT System Architecture 73
4.6 Challenges and Solutions 78
4.7 Conclusion 81
References 82
5 IoT Devices in Transactive System 87
G. Jagadish and P. Sriramalakshmi
5.1 Introduction 87
5.2 Integration of IoT Devices for Data Collection 88
5.3 Role of Sensor 90
5.4 Sensor Types 91
5.5 Role of Sensors During Data Collection 92
5.6 Role of Actuators 93
5.7 Challenges Faced in Device Connectivity 95
5.8 Challenges in Data Security 96
5.9 Conclusion 101
References 101
6 IoT in Power Electronics: Transforming the Future of Energy Management
107
Dhandapani Lakshmi, Rahiman Zahira, Vallikanu Pramila, Gunasekaran
Ezhilarasi, Rajesh K. Padmashini, Palanisamy Sivaraman, and Chenniappan
Sharmeela
6.1 Introduction to IoT in Power Electronics 107
6.2 IoT in Power Conversion: Enhancing Efficiency and Reliability 112
6.3 Introduction to IIoT-Driven Automation 115
6.4 Future Prospects of IoT in Power Conversion 116
6.5 Regulatory and Standardization Considerations 119
6.6 IoT in Power Transmission for Long Distance 119
6.7 Conclusion 123
References 124
7 Harnessing IoT: Transforming Smart Grid Advancements 127
Pijush K. Dutta Pramanik, Bijoy K. Upadhyaya, Ajay Kushwaha, and Debashish
Bhowmik
7.1 Introduction to Smart Grid and IoT Integration 127
7.2 Architecture of a Smart Grid IoT System 131
7.3 Remote Control and Automation in Smart Grids 137
7.4 Automated Load Shifting Strategies Using IoT 141
7.5 IoT Applications for Real-Time Monitoring of Smart Grids 142
7.6 Challenges in Implementing IoT in Smart Grids 151
7.7 Economics of IoT-Enabled Smart Grid 154
7.8 Smart Grid in India 167
7.9 Conclusions 169
References 170
8 Cybersecurity Challenges in Smart Grid IoT 175
Zain Buksh, Neeraj A. Sharma, Rishal Chand, Jashnil Kumar, and A. B. M.
Shawkat Ali
8.1 Introduction 175
8.2 Research Background 178
8.3 Cybersecurity Challenges in Smart Grid IoT 183
8.4 Case Studies and Real-World Examples 194
8.5 Future Trends and Considerations 200
8.6 Conclusions 201
References 202
9 IoT-Based Monitoring for Substations 207
Rajesh K. Padmashini, Dhandapani Lakshmi, Rajasekharan Rajasree,
Janarthanan N. Rajesh Kumar, Rahiman Zahira, Palanisamy Sivaraman, and
Chenniappan Sharmeela
9.1 Introduction to IoT-Based Monitoring for Substations 207
9.2 Components of Substation Automation and Monitoring 208
9.3 Architecture of Substation Automation 209
9.4 The Need for IoT in Substation Monitoring 210
9.5 Automation and Control in Substation Environment 211
9.6 Substation Automation and Monitoring 213
9.7 Examples 215
9.8 Others 217
9.9 Conclusion 218
References 218
10 IoT Application in Condition Monitoring and Fault Diagnosis in
Electrical Systems 221
Ravichandran Karthick Manoj, Dhandapani Lakshmi, Rajasekharan Rajasree,
Sukumaran Aasha Nandhini, Palanisamy Sivaraman, and Rahiman Zahira
10.1 Introduction 221
10.2 Importance of Condition Monitoring (CM) in Electrical Systems 222
10.3 Enhancing Reliability and Performance of Condition Monitoring 223
10.4 Proactive Maintenance Strategies Enabled by Condition Monitoring 223
10.5 Methods of Condition Monitoring 224
10.6 Implementation of Vibration Analysis 225
10.7 Vibration 226
10.8 What Can Vibration Analysis Detect? 229
10.9 Block Diagram of Vibration Monitoring System 231
10.10 Industrial Applications of Vibration Analysis 232
10.11 Advantages of Vibration Analysis for Condition Monitoring in
Electrical Systems 234
10.12 Disadvantages of Vibration Analysis for Condition Monitoring in
Electrical Systems 234
10.13 Importance of Fault Diagnosis in Electrical System 235
10.14 Integration with IoT of Conditional Monitoring Electrical System 236
10.15 Real-Time Monitoring and Predictive Maintenance 237
10.16 Energy Management and Asset Performance Optimization 238
10.17 Safety, Compliance, and Future Trends 239
10.18 Future Trends in IoT Application in Condition Monitoring and Fault
Diagnosis in Electrical Systems 239
References 240
11 IoT-Powered Robust Anomaly Detection and CNN-Enabled Predictive
Maintenance to Enhance Solar PV System Performance 243
Kumaresa P. Punitha
11.1 Introduction 243
11.2 IoT Application in Condition Monitoring 244
11.3 IoT Application in Fault Prediction 245
11.4 Overview of Solar PV System Faults 245
11.5 Need for IoT and CNN Algorithm for Anomaly Detection of Solar PV
System 247
11.6 System Description 248
11.7 Proposed Algorithm 248
11.8 Results and Discussion 249
11.9 Conclusion 254
References 254
12 Advancements in Smart Energy Management: Enhancing Efficiency Through
Advanced Metering Infrastructure and Energy Monitoring 257
S. Nazrin Salma, A. Niyas Ahamed, and G. Srinivasan
12.1 Introduction to Smart Energy Management 257
12.2 Evolution of Energy Management Systems 258
12.3 Traditional Energy Management 258
12.4 Transition to Smart Grids 259
12.5 Role of Smart Meters and Advanced Metering Infrastructure 260
12.6 Effects on Contemporary Energy Systems 260
12.7 Digital Innovations in Energy Management 260
12.8 Smart Meters: Empowering Consumers 263
12.9 Revolutionizing Energy Consumption 263
12.10 Advanced Metering Infrastructure (AMI): Streamlining Energy 264
12.11 Case Studies of Successful AMI Implementations 264
12.12 Energy Monitoring and Management 265
12.13 Examples of Energy Management Practices 266
12.14 Illustrations and Case Studies in the Practical Application of Smart
Energy Management 266
12.15 Optimization of Urban Grids and IoT Devices 266
12.16 Challenges and Opportunities in Smart Energy 267
12.17 Opportunities for Advancements 268
12.18 Real-Time Optimization 268
12.19 Automated Decision-Making 268
12.20 Enhancing Efficiency and Reliability 269
12.21 Real-Time Optimization of Storage Solutions 269
12.22 Managing Variability and Intermittency 269
12.23 Grid Resilience and Stability 270
12.24 Insights into Potential Vulnerabilities 270
12.25 Automation of Grid Operations 270
12.26 Regulatory Frameworks and Policies 271
12.27 Conclusion: The Future of Smart Energy Management 271
References 272
13 IoT for Power Quality Applications 275
Rahiman Zahira, Dhandapani Lakshmi, Shanmugasundaram Logeshkumar,
Palanisamy Sivaraman, Chenniappan Sharmeela, and Sanjeevikumar Padmanaban
13.1 Introduction to Power Quality in Modern Electrical Systems 275
13.2 Power Quality Standards 276
13.3 Power Quality Solutions 277
13.4 IOT for Power Quality 280
13.5 The Role of IoT in Enhancing Power Quality 281
13.6 Architecture for Power Quality Management Using IoT 282
13.7 IoT Architecture for Smart Grid and Power Quality Applications 283
13.8 IoT Sensors and Devices for Power Quality Monitoring 286
13.9 Conclusions 287
References 288
14 An IoT and 1D Convolutional Neural Network-Based Method for Smart
Building Energy Management 291
Aleena Swetapadma, Nalini P. Behera, Harsh Saran, and Saurav Kumar
14.1 Introduction 291
14.2 One-Dimensional Convolutional Neural Network 292
14.3 Proposed Method 292
14.4 Result 296
14.5 Discussion 298
14.6 Conclusion 299
References 299
15 IoT for E-Mobility 301
Shanmugasundaram Logeshkumar, Krishnakumar Shanmugasundaram, Rahiman
Zahira, Palanisamy Sivaraman, and Chenniappan Sharmeela
Introduction 301
15.1 What Is IoT for E-Mobility? 301
15.2 Benefits of IoT for E-Mobility 302
15.3 Challenges of IoT for E-Mobility 302
15.4 The Future of IoT for E-Mobility 303
15.5 Various Considerations and Possibilities of IoT for E-Mobility 304
15.6 Conclusion 331
References 332
16 Standards for Internet of Things (IoT) 335
Mohamed Mustafa Mohamed Iqbal, Balasubramanian Nandhan, Sakthivel Sruthi,
Ravikumar Mithra, Rajagopal Logesh Krishna, Rahiman Zahira, Balan
Gunapriya, and Veerasamy Balaji
16.1 Introduction 335
16.2 Smart Grid, Smart Transportation, and Smart Cities 336
16.3 Standardization of IoT Environment 337
16.4 IoT Standards in Healthcare 338
16.5 IoT Standards in Agriculture and Food Industry 341
16.6 IoT Standards in Smart Home and Industrial Automation 347
16.7 IoT Standards for Disaster Management 351
16.8 IoT Standards in Cybersecurity and Data Science Domain 353
16.9 Research Scope for Future Work 355
16.10 Conclusion 355
References 356
17 Challenges and Future Directions 363
Burhan Khan, Aabid A. Mir, Nur F.L.M. Rosely, and Khang W. Goh
17.1 Introduction 363
17.2 Security and Privacy Concerns in Transactive Systems 366
17.3 Scalability and Standardization Issues 370
17.4 Emerging Trends in Transactive IoT 373
17.5 Future Developments in Transactive IoT 376
17.6 Policy, Regulation, and Ethical Considerations 378
17.7 Conclusion 380
References 382
Index 387
List of Contributors xxxi
1 Introduction to the Internet of Things 1
Anbazhagan Lavanya, Jayachandran Divya Navamani, and Rahiman Zahira
1.1 Introduction 1
1.2 Evolution of IoT 2
1.3 Need for IoT 3
1.4 Energy Management 4
1.5 Main Components Used in IoT 5
1.6 IoT Devices 6
1.7 IoT Characteristics 7
1.8 IoT Market Share 11
1.9 Conclusion 14
References 15
2 IoT Fundamentals: Platforms, Architectures, and Sensor Technologies 17
Naseer Ahamed Javed, Yogesh Rajkumar, and Kallankurichy P. Kaliyamurthie
2.1 Introduction 17
2.2 Overview of IoT System Architectures and Design Principles 17
2.3 Exploring IoT/M2M Systems and Their Role in Connectivity 23
2.4 Introduction to Sensors and Transducers in IoT 25
2.5 LoWPAN Network Management Protocol (LNMP) 27
2.6 WSN Diagnostic Tools: Ensuring Reliability and Performance 29
2.7 Overview of IoT Communication Technologies 31
2.8 Practical Applications of IoT Platforms, Sensor Technologies and
Communication Protocols 34
References 40
3 Communication Protocols for Transactive IoT 43
A. Kamalasegaran, G. Kabilan, and P. Sriramalakshmi
3.1 Introduction 43
3.2 Transactive Systems in Smart Grids 43
3.3 MQTT, CoAP, and Other Protocols in Transactive Systems 45
3.4 Data Distribution Service (DDS) 49
3.5 Edge Computing and Real-Time Implementation 50
3.6 Reliability and Scalability 54
3.7 Case Studies and Real-Life Implementations 57
3.8 Conclusion 58
References 59
4 Transactive IoT: Merging Transactions and Connectivity 63
Burhan Khan, Aabid A. Mir, Naser S. Almutairi, and Khang W. Goh
4.1 Introduction 63
4.2 IoT Integration with Transactive Models 64
4.3 Transactive IoT in Modern Applications 66
4.4 Economic and Market-Based Approaches 71
4.5 Transactive IoT System Architecture 73
4.6 Challenges and Solutions 78
4.7 Conclusion 81
References 82
5 IoT Devices in Transactive System 87
G. Jagadish and P. Sriramalakshmi
5.1 Introduction 87
5.2 Integration of IoT Devices for Data Collection 88
5.3 Role of Sensor 90
5.4 Sensor Types 91
5.5 Role of Sensors During Data Collection 92
5.6 Role of Actuators 93
5.7 Challenges Faced in Device Connectivity 95
5.8 Challenges in Data Security 96
5.9 Conclusion 101
References 101
6 IoT in Power Electronics: Transforming the Future of Energy Management
107
Dhandapani Lakshmi, Rahiman Zahira, Vallikanu Pramila, Gunasekaran
Ezhilarasi, Rajesh K. Padmashini, Palanisamy Sivaraman, and Chenniappan
Sharmeela
6.1 Introduction to IoT in Power Electronics 107
6.2 IoT in Power Conversion: Enhancing Efficiency and Reliability 112
6.3 Introduction to IIoT-Driven Automation 115
6.4 Future Prospects of IoT in Power Conversion 116
6.5 Regulatory and Standardization Considerations 119
6.6 IoT in Power Transmission for Long Distance 119
6.7 Conclusion 123
References 124
7 Harnessing IoT: Transforming Smart Grid Advancements 127
Pijush K. Dutta Pramanik, Bijoy K. Upadhyaya, Ajay Kushwaha, and Debashish
Bhowmik
7.1 Introduction to Smart Grid and IoT Integration 127
7.2 Architecture of a Smart Grid IoT System 131
7.3 Remote Control and Automation in Smart Grids 137
7.4 Automated Load Shifting Strategies Using IoT 141
7.5 IoT Applications for Real-Time Monitoring of Smart Grids 142
7.6 Challenges in Implementing IoT in Smart Grids 151
7.7 Economics of IoT-Enabled Smart Grid 154
7.8 Smart Grid in India 167
7.9 Conclusions 169
References 170
8 Cybersecurity Challenges in Smart Grid IoT 175
Zain Buksh, Neeraj A. Sharma, Rishal Chand, Jashnil Kumar, and A. B. M.
Shawkat Ali
8.1 Introduction 175
8.2 Research Background 178
8.3 Cybersecurity Challenges in Smart Grid IoT 183
8.4 Case Studies and Real-World Examples 194
8.5 Future Trends and Considerations 200
8.6 Conclusions 201
References 202
9 IoT-Based Monitoring for Substations 207
Rajesh K. Padmashini, Dhandapani Lakshmi, Rajasekharan Rajasree,
Janarthanan N. Rajesh Kumar, Rahiman Zahira, Palanisamy Sivaraman, and
Chenniappan Sharmeela
9.1 Introduction to IoT-Based Monitoring for Substations 207
9.2 Components of Substation Automation and Monitoring 208
9.3 Architecture of Substation Automation 209
9.4 The Need for IoT in Substation Monitoring 210
9.5 Automation and Control in Substation Environment 211
9.6 Substation Automation and Monitoring 213
9.7 Examples 215
9.8 Others 217
9.9 Conclusion 218
References 218
10 IoT Application in Condition Monitoring and Fault Diagnosis in
Electrical Systems 221
Ravichandran Karthick Manoj, Dhandapani Lakshmi, Rajasekharan Rajasree,
Sukumaran Aasha Nandhini, Palanisamy Sivaraman, and Rahiman Zahira
10.1 Introduction 221
10.2 Importance of Condition Monitoring (CM) in Electrical Systems 222
10.3 Enhancing Reliability and Performance of Condition Monitoring 223
10.4 Proactive Maintenance Strategies Enabled by Condition Monitoring 223
10.5 Methods of Condition Monitoring 224
10.6 Implementation of Vibration Analysis 225
10.7 Vibration 226
10.8 What Can Vibration Analysis Detect? 229
10.9 Block Diagram of Vibration Monitoring System 231
10.10 Industrial Applications of Vibration Analysis 232
10.11 Advantages of Vibration Analysis for Condition Monitoring in
Electrical Systems 234
10.12 Disadvantages of Vibration Analysis for Condition Monitoring in
Electrical Systems 234
10.13 Importance of Fault Diagnosis in Electrical System 235
10.14 Integration with IoT of Conditional Monitoring Electrical System 236
10.15 Real-Time Monitoring and Predictive Maintenance 237
10.16 Energy Management and Asset Performance Optimization 238
10.17 Safety, Compliance, and Future Trends 239
10.18 Future Trends in IoT Application in Condition Monitoring and Fault
Diagnosis in Electrical Systems 239
References 240
11 IoT-Powered Robust Anomaly Detection and CNN-Enabled Predictive
Maintenance to Enhance Solar PV System Performance 243
Kumaresa P. Punitha
11.1 Introduction 243
11.2 IoT Application in Condition Monitoring 244
11.3 IoT Application in Fault Prediction 245
11.4 Overview of Solar PV System Faults 245
11.5 Need for IoT and CNN Algorithm for Anomaly Detection of Solar PV
System 247
11.6 System Description 248
11.7 Proposed Algorithm 248
11.8 Results and Discussion 249
11.9 Conclusion 254
References 254
12 Advancements in Smart Energy Management: Enhancing Efficiency Through
Advanced Metering Infrastructure and Energy Monitoring 257
S. Nazrin Salma, A. Niyas Ahamed, and G. Srinivasan
12.1 Introduction to Smart Energy Management 257
12.2 Evolution of Energy Management Systems 258
12.3 Traditional Energy Management 258
12.4 Transition to Smart Grids 259
12.5 Role of Smart Meters and Advanced Metering Infrastructure 260
12.6 Effects on Contemporary Energy Systems 260
12.7 Digital Innovations in Energy Management 260
12.8 Smart Meters: Empowering Consumers 263
12.9 Revolutionizing Energy Consumption 263
12.10 Advanced Metering Infrastructure (AMI): Streamlining Energy 264
12.11 Case Studies of Successful AMI Implementations 264
12.12 Energy Monitoring and Management 265
12.13 Examples of Energy Management Practices 266
12.14 Illustrations and Case Studies in the Practical Application of Smart
Energy Management 266
12.15 Optimization of Urban Grids and IoT Devices 266
12.16 Challenges and Opportunities in Smart Energy 267
12.17 Opportunities for Advancements 268
12.18 Real-Time Optimization 268
12.19 Automated Decision-Making 268
12.20 Enhancing Efficiency and Reliability 269
12.21 Real-Time Optimization of Storage Solutions 269
12.22 Managing Variability and Intermittency 269
12.23 Grid Resilience and Stability 270
12.24 Insights into Potential Vulnerabilities 270
12.25 Automation of Grid Operations 270
12.26 Regulatory Frameworks and Policies 271
12.27 Conclusion: The Future of Smart Energy Management 271
References 272
13 IoT for Power Quality Applications 275
Rahiman Zahira, Dhandapani Lakshmi, Shanmugasundaram Logeshkumar,
Palanisamy Sivaraman, Chenniappan Sharmeela, and Sanjeevikumar Padmanaban
13.1 Introduction to Power Quality in Modern Electrical Systems 275
13.2 Power Quality Standards 276
13.3 Power Quality Solutions 277
13.4 IOT for Power Quality 280
13.5 The Role of IoT in Enhancing Power Quality 281
13.6 Architecture for Power Quality Management Using IoT 282
13.7 IoT Architecture for Smart Grid and Power Quality Applications 283
13.8 IoT Sensors and Devices for Power Quality Monitoring 286
13.9 Conclusions 287
References 288
14 An IoT and 1D Convolutional Neural Network-Based Method for Smart
Building Energy Management 291
Aleena Swetapadma, Nalini P. Behera, Harsh Saran, and Saurav Kumar
14.1 Introduction 291
14.2 One-Dimensional Convolutional Neural Network 292
14.3 Proposed Method 292
14.4 Result 296
14.5 Discussion 298
14.6 Conclusion 299
References 299
15 IoT for E-Mobility 301
Shanmugasundaram Logeshkumar, Krishnakumar Shanmugasundaram, Rahiman
Zahira, Palanisamy Sivaraman, and Chenniappan Sharmeela
Introduction 301
15.1 What Is IoT for E-Mobility? 301
15.2 Benefits of IoT for E-Mobility 302
15.3 Challenges of IoT for E-Mobility 302
15.4 The Future of IoT for E-Mobility 303
15.5 Various Considerations and Possibilities of IoT for E-Mobility 304
15.6 Conclusion 331
References 332
16 Standards for Internet of Things (IoT) 335
Mohamed Mustafa Mohamed Iqbal, Balasubramanian Nandhan, Sakthivel Sruthi,
Ravikumar Mithra, Rajagopal Logesh Krishna, Rahiman Zahira, Balan
Gunapriya, and Veerasamy Balaji
16.1 Introduction 335
16.2 Smart Grid, Smart Transportation, and Smart Cities 336
16.3 Standardization of IoT Environment 337
16.4 IoT Standards in Healthcare 338
16.5 IoT Standards in Agriculture and Food Industry 341
16.6 IoT Standards in Smart Home and Industrial Automation 347
16.7 IoT Standards for Disaster Management 351
16.8 IoT Standards in Cybersecurity and Data Science Domain 353
16.9 Research Scope for Future Work 355
16.10 Conclusion 355
References 356
17 Challenges and Future Directions 363
Burhan Khan, Aabid A. Mir, Nur F.L.M. Rosely, and Khang W. Goh
17.1 Introduction 363
17.2 Security and Privacy Concerns in Transactive Systems 366
17.3 Scalability and Standardization Issues 370
17.4 Emerging Trends in Transactive IoT 373
17.5 Future Developments in Transactive IoT 376
17.6 Policy, Regulation, and Ethical Considerations 378
17.7 Conclusion 380
References 382
Index 387
About the Editors xxvii
List of Contributors xxxi
1 Introduction to the Internet of Things 1
Anbazhagan Lavanya, Jayachandran Divya Navamani, and Rahiman Zahira
1.1 Introduction 1
1.2 Evolution of IoT 2
1.3 Need for IoT 3
1.4 Energy Management 4
1.5 Main Components Used in IoT 5
1.6 IoT Devices 6
1.7 IoT Characteristics 7
1.8 IoT Market Share 11
1.9 Conclusion 14
References 15
2 IoT Fundamentals: Platforms, Architectures, and Sensor Technologies 17
Naseer Ahamed Javed, Yogesh Rajkumar, and Kallankurichy P. Kaliyamurthie
2.1 Introduction 17
2.2 Overview of IoT System Architectures and Design Principles 17
2.3 Exploring IoT/M2M Systems and Their Role in Connectivity 23
2.4 Introduction to Sensors and Transducers in IoT 25
2.5 LoWPAN Network Management Protocol (LNMP) 27
2.6 WSN Diagnostic Tools: Ensuring Reliability and Performance 29
2.7 Overview of IoT Communication Technologies 31
2.8 Practical Applications of IoT Platforms, Sensor Technologies and
Communication Protocols 34
References 40
3 Communication Protocols for Transactive IoT 43
A. Kamalasegaran, G. Kabilan, and P. Sriramalakshmi
3.1 Introduction 43
3.2 Transactive Systems in Smart Grids 43
3.3 MQTT, CoAP, and Other Protocols in Transactive Systems 45
3.4 Data Distribution Service (DDS) 49
3.5 Edge Computing and Real-Time Implementation 50
3.6 Reliability and Scalability 54
3.7 Case Studies and Real-Life Implementations 57
3.8 Conclusion 58
References 59
4 Transactive IoT: Merging Transactions and Connectivity 63
Burhan Khan, Aabid A. Mir, Naser S. Almutairi, and Khang W. Goh
4.1 Introduction 63
4.2 IoT Integration with Transactive Models 64
4.3 Transactive IoT in Modern Applications 66
4.4 Economic and Market-Based Approaches 71
4.5 Transactive IoT System Architecture 73
4.6 Challenges and Solutions 78
4.7 Conclusion 81
References 82
5 IoT Devices in Transactive System 87
G. Jagadish and P. Sriramalakshmi
5.1 Introduction 87
5.2 Integration of IoT Devices for Data Collection 88
5.3 Role of Sensor 90
5.4 Sensor Types 91
5.5 Role of Sensors During Data Collection 92
5.6 Role of Actuators 93
5.7 Challenges Faced in Device Connectivity 95
5.8 Challenges in Data Security 96
5.9 Conclusion 101
References 101
6 IoT in Power Electronics: Transforming the Future of Energy Management
107
Dhandapani Lakshmi, Rahiman Zahira, Vallikanu Pramila, Gunasekaran
Ezhilarasi, Rajesh K. Padmashini, Palanisamy Sivaraman, and Chenniappan
Sharmeela
6.1 Introduction to IoT in Power Electronics 107
6.2 IoT in Power Conversion: Enhancing Efficiency and Reliability 112
6.3 Introduction to IIoT-Driven Automation 115
6.4 Future Prospects of IoT in Power Conversion 116
6.5 Regulatory and Standardization Considerations 119
6.6 IoT in Power Transmission for Long Distance 119
6.7 Conclusion 123
References 124
7 Harnessing IoT: Transforming Smart Grid Advancements 127
Pijush K. Dutta Pramanik, Bijoy K. Upadhyaya, Ajay Kushwaha, and Debashish
Bhowmik
7.1 Introduction to Smart Grid and IoT Integration 127
7.2 Architecture of a Smart Grid IoT System 131
7.3 Remote Control and Automation in Smart Grids 137
7.4 Automated Load Shifting Strategies Using IoT 141
7.5 IoT Applications for Real-Time Monitoring of Smart Grids 142
7.6 Challenges in Implementing IoT in Smart Grids 151
7.7 Economics of IoT-Enabled Smart Grid 154
7.8 Smart Grid in India 167
7.9 Conclusions 169
References 170
8 Cybersecurity Challenges in Smart Grid IoT 175
Zain Buksh, Neeraj A. Sharma, Rishal Chand, Jashnil Kumar, and A. B. M.
Shawkat Ali
8.1 Introduction 175
8.2 Research Background 178
8.3 Cybersecurity Challenges in Smart Grid IoT 183
8.4 Case Studies and Real-World Examples 194
8.5 Future Trends and Considerations 200
8.6 Conclusions 201
References 202
9 IoT-Based Monitoring for Substations 207
Rajesh K. Padmashini, Dhandapani Lakshmi, Rajasekharan Rajasree,
Janarthanan N. Rajesh Kumar, Rahiman Zahira, Palanisamy Sivaraman, and
Chenniappan Sharmeela
9.1 Introduction to IoT-Based Monitoring for Substations 207
9.2 Components of Substation Automation and Monitoring 208
9.3 Architecture of Substation Automation 209
9.4 The Need for IoT in Substation Monitoring 210
9.5 Automation and Control in Substation Environment 211
9.6 Substation Automation and Monitoring 213
9.7 Examples 215
9.8 Others 217
9.9 Conclusion 218
References 218
10 IoT Application in Condition Monitoring and Fault Diagnosis in
Electrical Systems 221
Ravichandran Karthick Manoj, Dhandapani Lakshmi, Rajasekharan Rajasree,
Sukumaran Aasha Nandhini, Palanisamy Sivaraman, and Rahiman Zahira
10.1 Introduction 221
10.2 Importance of Condition Monitoring (CM) in Electrical Systems 222
10.3 Enhancing Reliability and Performance of Condition Monitoring 223
10.4 Proactive Maintenance Strategies Enabled by Condition Monitoring 223
10.5 Methods of Condition Monitoring 224
10.6 Implementation of Vibration Analysis 225
10.7 Vibration 226
10.8 What Can Vibration Analysis Detect? 229
10.9 Block Diagram of Vibration Monitoring System 231
10.10 Industrial Applications of Vibration Analysis 232
10.11 Advantages of Vibration Analysis for Condition Monitoring in
Electrical Systems 234
10.12 Disadvantages of Vibration Analysis for Condition Monitoring in
Electrical Systems 234
10.13 Importance of Fault Diagnosis in Electrical System 235
10.14 Integration with IoT of Conditional Monitoring Electrical System 236
10.15 Real-Time Monitoring and Predictive Maintenance 237
10.16 Energy Management and Asset Performance Optimization 238
10.17 Safety, Compliance, and Future Trends 239
10.18 Future Trends in IoT Application in Condition Monitoring and Fault
Diagnosis in Electrical Systems 239
References 240
11 IoT-Powered Robust Anomaly Detection and CNN-Enabled Predictive
Maintenance to Enhance Solar PV System Performance 243
Kumaresa P. Punitha
11.1 Introduction 243
11.2 IoT Application in Condition Monitoring 244
11.3 IoT Application in Fault Prediction 245
11.4 Overview of Solar PV System Faults 245
11.5 Need for IoT and CNN Algorithm for Anomaly Detection of Solar PV
System 247
11.6 System Description 248
11.7 Proposed Algorithm 248
11.8 Results and Discussion 249
11.9 Conclusion 254
References 254
12 Advancements in Smart Energy Management: Enhancing Efficiency Through
Advanced Metering Infrastructure and Energy Monitoring 257
S. Nazrin Salma, A. Niyas Ahamed, and G. Srinivasan
12.1 Introduction to Smart Energy Management 257
12.2 Evolution of Energy Management Systems 258
12.3 Traditional Energy Management 258
12.4 Transition to Smart Grids 259
12.5 Role of Smart Meters and Advanced Metering Infrastructure 260
12.6 Effects on Contemporary Energy Systems 260
12.7 Digital Innovations in Energy Management 260
12.8 Smart Meters: Empowering Consumers 263
12.9 Revolutionizing Energy Consumption 263
12.10 Advanced Metering Infrastructure (AMI): Streamlining Energy 264
12.11 Case Studies of Successful AMI Implementations 264
12.12 Energy Monitoring and Management 265
12.13 Examples of Energy Management Practices 266
12.14 Illustrations and Case Studies in the Practical Application of Smart
Energy Management 266
12.15 Optimization of Urban Grids and IoT Devices 266
12.16 Challenges and Opportunities in Smart Energy 267
12.17 Opportunities for Advancements 268
12.18 Real-Time Optimization 268
12.19 Automated Decision-Making 268
12.20 Enhancing Efficiency and Reliability 269
12.21 Real-Time Optimization of Storage Solutions 269
12.22 Managing Variability and Intermittency 269
12.23 Grid Resilience and Stability 270
12.24 Insights into Potential Vulnerabilities 270
12.25 Automation of Grid Operations 270
12.26 Regulatory Frameworks and Policies 271
12.27 Conclusion: The Future of Smart Energy Management 271
References 272
13 IoT for Power Quality Applications 275
Rahiman Zahira, Dhandapani Lakshmi, Shanmugasundaram Logeshkumar,
Palanisamy Sivaraman, Chenniappan Sharmeela, and Sanjeevikumar Padmanaban
13.1 Introduction to Power Quality in Modern Electrical Systems 275
13.2 Power Quality Standards 276
13.3 Power Quality Solutions 277
13.4 IOT for Power Quality 280
13.5 The Role of IoT in Enhancing Power Quality 281
13.6 Architecture for Power Quality Management Using IoT 282
13.7 IoT Architecture for Smart Grid and Power Quality Applications 283
13.8 IoT Sensors and Devices for Power Quality Monitoring 286
13.9 Conclusions 287
References 288
14 An IoT and 1D Convolutional Neural Network-Based Method for Smart
Building Energy Management 291
Aleena Swetapadma, Nalini P. Behera, Harsh Saran, and Saurav Kumar
14.1 Introduction 291
14.2 One-Dimensional Convolutional Neural Network 292
14.3 Proposed Method 292
14.4 Result 296
14.5 Discussion 298
14.6 Conclusion 299
References 299
15 IoT for E-Mobility 301
Shanmugasundaram Logeshkumar, Krishnakumar Shanmugasundaram, Rahiman
Zahira, Palanisamy Sivaraman, and Chenniappan Sharmeela
Introduction 301
15.1 What Is IoT for E-Mobility? 301
15.2 Benefits of IoT for E-Mobility 302
15.3 Challenges of IoT for E-Mobility 302
15.4 The Future of IoT for E-Mobility 303
15.5 Various Considerations and Possibilities of IoT for E-Mobility 304
15.6 Conclusion 331
References 332
16 Standards for Internet of Things (IoT) 335
Mohamed Mustafa Mohamed Iqbal, Balasubramanian Nandhan, Sakthivel Sruthi,
Ravikumar Mithra, Rajagopal Logesh Krishna, Rahiman Zahira, Balan
Gunapriya, and Veerasamy Balaji
16.1 Introduction 335
16.2 Smart Grid, Smart Transportation, and Smart Cities 336
16.3 Standardization of IoT Environment 337
16.4 IoT Standards in Healthcare 338
16.5 IoT Standards in Agriculture and Food Industry 341
16.6 IoT Standards in Smart Home and Industrial Automation 347
16.7 IoT Standards for Disaster Management 351
16.8 IoT Standards in Cybersecurity and Data Science Domain 353
16.9 Research Scope for Future Work 355
16.10 Conclusion 355
References 356
17 Challenges and Future Directions 363
Burhan Khan, Aabid A. Mir, Nur F.L.M. Rosely, and Khang W. Goh
17.1 Introduction 363
17.2 Security and Privacy Concerns in Transactive Systems 366
17.3 Scalability and Standardization Issues 370
17.4 Emerging Trends in Transactive IoT 373
17.5 Future Developments in Transactive IoT 376
17.6 Policy, Regulation, and Ethical Considerations 378
17.7 Conclusion 380
References 382
Index 387
List of Contributors xxxi
1 Introduction to the Internet of Things 1
Anbazhagan Lavanya, Jayachandran Divya Navamani, and Rahiman Zahira
1.1 Introduction 1
1.2 Evolution of IoT 2
1.3 Need for IoT 3
1.4 Energy Management 4
1.5 Main Components Used in IoT 5
1.6 IoT Devices 6
1.7 IoT Characteristics 7
1.8 IoT Market Share 11
1.9 Conclusion 14
References 15
2 IoT Fundamentals: Platforms, Architectures, and Sensor Technologies 17
Naseer Ahamed Javed, Yogesh Rajkumar, and Kallankurichy P. Kaliyamurthie
2.1 Introduction 17
2.2 Overview of IoT System Architectures and Design Principles 17
2.3 Exploring IoT/M2M Systems and Their Role in Connectivity 23
2.4 Introduction to Sensors and Transducers in IoT 25
2.5 LoWPAN Network Management Protocol (LNMP) 27
2.6 WSN Diagnostic Tools: Ensuring Reliability and Performance 29
2.7 Overview of IoT Communication Technologies 31
2.8 Practical Applications of IoT Platforms, Sensor Technologies and
Communication Protocols 34
References 40
3 Communication Protocols for Transactive IoT 43
A. Kamalasegaran, G. Kabilan, and P. Sriramalakshmi
3.1 Introduction 43
3.2 Transactive Systems in Smart Grids 43
3.3 MQTT, CoAP, and Other Protocols in Transactive Systems 45
3.4 Data Distribution Service (DDS) 49
3.5 Edge Computing and Real-Time Implementation 50
3.6 Reliability and Scalability 54
3.7 Case Studies and Real-Life Implementations 57
3.8 Conclusion 58
References 59
4 Transactive IoT: Merging Transactions and Connectivity 63
Burhan Khan, Aabid A. Mir, Naser S. Almutairi, and Khang W. Goh
4.1 Introduction 63
4.2 IoT Integration with Transactive Models 64
4.3 Transactive IoT in Modern Applications 66
4.4 Economic and Market-Based Approaches 71
4.5 Transactive IoT System Architecture 73
4.6 Challenges and Solutions 78
4.7 Conclusion 81
References 82
5 IoT Devices in Transactive System 87
G. Jagadish and P. Sriramalakshmi
5.1 Introduction 87
5.2 Integration of IoT Devices for Data Collection 88
5.3 Role of Sensor 90
5.4 Sensor Types 91
5.5 Role of Sensors During Data Collection 92
5.6 Role of Actuators 93
5.7 Challenges Faced in Device Connectivity 95
5.8 Challenges in Data Security 96
5.9 Conclusion 101
References 101
6 IoT in Power Electronics: Transforming the Future of Energy Management
107
Dhandapani Lakshmi, Rahiman Zahira, Vallikanu Pramila, Gunasekaran
Ezhilarasi, Rajesh K. Padmashini, Palanisamy Sivaraman, and Chenniappan
Sharmeela
6.1 Introduction to IoT in Power Electronics 107
6.2 IoT in Power Conversion: Enhancing Efficiency and Reliability 112
6.3 Introduction to IIoT-Driven Automation 115
6.4 Future Prospects of IoT in Power Conversion 116
6.5 Regulatory and Standardization Considerations 119
6.6 IoT in Power Transmission for Long Distance 119
6.7 Conclusion 123
References 124
7 Harnessing IoT: Transforming Smart Grid Advancements 127
Pijush K. Dutta Pramanik, Bijoy K. Upadhyaya, Ajay Kushwaha, and Debashish
Bhowmik
7.1 Introduction to Smart Grid and IoT Integration 127
7.2 Architecture of a Smart Grid IoT System 131
7.3 Remote Control and Automation in Smart Grids 137
7.4 Automated Load Shifting Strategies Using IoT 141
7.5 IoT Applications for Real-Time Monitoring of Smart Grids 142
7.6 Challenges in Implementing IoT in Smart Grids 151
7.7 Economics of IoT-Enabled Smart Grid 154
7.8 Smart Grid in India 167
7.9 Conclusions 169
References 170
8 Cybersecurity Challenges in Smart Grid IoT 175
Zain Buksh, Neeraj A. Sharma, Rishal Chand, Jashnil Kumar, and A. B. M.
Shawkat Ali
8.1 Introduction 175
8.2 Research Background 178
8.3 Cybersecurity Challenges in Smart Grid IoT 183
8.4 Case Studies and Real-World Examples 194
8.5 Future Trends and Considerations 200
8.6 Conclusions 201
References 202
9 IoT-Based Monitoring for Substations 207
Rajesh K. Padmashini, Dhandapani Lakshmi, Rajasekharan Rajasree,
Janarthanan N. Rajesh Kumar, Rahiman Zahira, Palanisamy Sivaraman, and
Chenniappan Sharmeela
9.1 Introduction to IoT-Based Monitoring for Substations 207
9.2 Components of Substation Automation and Monitoring 208
9.3 Architecture of Substation Automation 209
9.4 The Need for IoT in Substation Monitoring 210
9.5 Automation and Control in Substation Environment 211
9.6 Substation Automation and Monitoring 213
9.7 Examples 215
9.8 Others 217
9.9 Conclusion 218
References 218
10 IoT Application in Condition Monitoring and Fault Diagnosis in
Electrical Systems 221
Ravichandran Karthick Manoj, Dhandapani Lakshmi, Rajasekharan Rajasree,
Sukumaran Aasha Nandhini, Palanisamy Sivaraman, and Rahiman Zahira
10.1 Introduction 221
10.2 Importance of Condition Monitoring (CM) in Electrical Systems 222
10.3 Enhancing Reliability and Performance of Condition Monitoring 223
10.4 Proactive Maintenance Strategies Enabled by Condition Monitoring 223
10.5 Methods of Condition Monitoring 224
10.6 Implementation of Vibration Analysis 225
10.7 Vibration 226
10.8 What Can Vibration Analysis Detect? 229
10.9 Block Diagram of Vibration Monitoring System 231
10.10 Industrial Applications of Vibration Analysis 232
10.11 Advantages of Vibration Analysis for Condition Monitoring in
Electrical Systems 234
10.12 Disadvantages of Vibration Analysis for Condition Monitoring in
Electrical Systems 234
10.13 Importance of Fault Diagnosis in Electrical System 235
10.14 Integration with IoT of Conditional Monitoring Electrical System 236
10.15 Real-Time Monitoring and Predictive Maintenance 237
10.16 Energy Management and Asset Performance Optimization 238
10.17 Safety, Compliance, and Future Trends 239
10.18 Future Trends in IoT Application in Condition Monitoring and Fault
Diagnosis in Electrical Systems 239
References 240
11 IoT-Powered Robust Anomaly Detection and CNN-Enabled Predictive
Maintenance to Enhance Solar PV System Performance 243
Kumaresa P. Punitha
11.1 Introduction 243
11.2 IoT Application in Condition Monitoring 244
11.3 IoT Application in Fault Prediction 245
11.4 Overview of Solar PV System Faults 245
11.5 Need for IoT and CNN Algorithm for Anomaly Detection of Solar PV
System 247
11.6 System Description 248
11.7 Proposed Algorithm 248
11.8 Results and Discussion 249
11.9 Conclusion 254
References 254
12 Advancements in Smart Energy Management: Enhancing Efficiency Through
Advanced Metering Infrastructure and Energy Monitoring 257
S. Nazrin Salma, A. Niyas Ahamed, and G. Srinivasan
12.1 Introduction to Smart Energy Management 257
12.2 Evolution of Energy Management Systems 258
12.3 Traditional Energy Management 258
12.4 Transition to Smart Grids 259
12.5 Role of Smart Meters and Advanced Metering Infrastructure 260
12.6 Effects on Contemporary Energy Systems 260
12.7 Digital Innovations in Energy Management 260
12.8 Smart Meters: Empowering Consumers 263
12.9 Revolutionizing Energy Consumption 263
12.10 Advanced Metering Infrastructure (AMI): Streamlining Energy 264
12.11 Case Studies of Successful AMI Implementations 264
12.12 Energy Monitoring and Management 265
12.13 Examples of Energy Management Practices 266
12.14 Illustrations and Case Studies in the Practical Application of Smart
Energy Management 266
12.15 Optimization of Urban Grids and IoT Devices 266
12.16 Challenges and Opportunities in Smart Energy 267
12.17 Opportunities for Advancements 268
12.18 Real-Time Optimization 268
12.19 Automated Decision-Making 268
12.20 Enhancing Efficiency and Reliability 269
12.21 Real-Time Optimization of Storage Solutions 269
12.22 Managing Variability and Intermittency 269
12.23 Grid Resilience and Stability 270
12.24 Insights into Potential Vulnerabilities 270
12.25 Automation of Grid Operations 270
12.26 Regulatory Frameworks and Policies 271
12.27 Conclusion: The Future of Smart Energy Management 271
References 272
13 IoT for Power Quality Applications 275
Rahiman Zahira, Dhandapani Lakshmi, Shanmugasundaram Logeshkumar,
Palanisamy Sivaraman, Chenniappan Sharmeela, and Sanjeevikumar Padmanaban
13.1 Introduction to Power Quality in Modern Electrical Systems 275
13.2 Power Quality Standards 276
13.3 Power Quality Solutions 277
13.4 IOT for Power Quality 280
13.5 The Role of IoT in Enhancing Power Quality 281
13.6 Architecture for Power Quality Management Using IoT 282
13.7 IoT Architecture for Smart Grid and Power Quality Applications 283
13.8 IoT Sensors and Devices for Power Quality Monitoring 286
13.9 Conclusions 287
References 288
14 An IoT and 1D Convolutional Neural Network-Based Method for Smart
Building Energy Management 291
Aleena Swetapadma, Nalini P. Behera, Harsh Saran, and Saurav Kumar
14.1 Introduction 291
14.2 One-Dimensional Convolutional Neural Network 292
14.3 Proposed Method 292
14.4 Result 296
14.5 Discussion 298
14.6 Conclusion 299
References 299
15 IoT for E-Mobility 301
Shanmugasundaram Logeshkumar, Krishnakumar Shanmugasundaram, Rahiman
Zahira, Palanisamy Sivaraman, and Chenniappan Sharmeela
Introduction 301
15.1 What Is IoT for E-Mobility? 301
15.2 Benefits of IoT for E-Mobility 302
15.3 Challenges of IoT for E-Mobility 302
15.4 The Future of IoT for E-Mobility 303
15.5 Various Considerations and Possibilities of IoT for E-Mobility 304
15.6 Conclusion 331
References 332
16 Standards for Internet of Things (IoT) 335
Mohamed Mustafa Mohamed Iqbal, Balasubramanian Nandhan, Sakthivel Sruthi,
Ravikumar Mithra, Rajagopal Logesh Krishna, Rahiman Zahira, Balan
Gunapriya, and Veerasamy Balaji
16.1 Introduction 335
16.2 Smart Grid, Smart Transportation, and Smart Cities 336
16.3 Standardization of IoT Environment 337
16.4 IoT Standards in Healthcare 338
16.5 IoT Standards in Agriculture and Food Industry 341
16.6 IoT Standards in Smart Home and Industrial Automation 347
16.7 IoT Standards for Disaster Management 351
16.8 IoT Standards in Cybersecurity and Data Science Domain 353
16.9 Research Scope for Future Work 355
16.10 Conclusion 355
References 356
17 Challenges and Future Directions 363
Burhan Khan, Aabid A. Mir, Nur F.L.M. Rosely, and Khang W. Goh
17.1 Introduction 363
17.2 Security and Privacy Concerns in Transactive Systems 366
17.3 Scalability and Standardization Issues 370
17.4 Emerging Trends in Transactive IoT 373
17.5 Future Developments in Transactive IoT 376
17.6 Policy, Regulation, and Ethical Considerations 378
17.7 Conclusion 380
References 382
Index 387