139,99 €
139,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
139,99 €
Als Download kaufen
139,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
139,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book presents an up to date view of iron biogeochemistry in the ocean. It encompasses the description of iron speciation, the analytical methods used to measure the different iron forms in seawater and the different iron biogeochemical models.
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 2.83MB
Andere Kunden interessierten sich auch für
- Bernard QueguinerThe Biogeochemical Cycle of Silicon in the Ocean (eBook, ePUB)139,99 €
- Climate in Context (eBook, ePUB)93,99 €
- Climate Adaptation Governance in Cities and Regions (eBook, ePUB)116,99 €
- David E. ReichleThe Global Carbon Cycle and Climate Change (eBook, ePUB)90,95 €
- Viatcheslav V. TikhomirovHydrogeochemistry Fundamentals and Advances, Volume 1, Groundwater Composition and Chemistry (eBook, ePUB)171,99 €
- Peter J. WebsterDynamics of the Tropical Atmosphere and Oceans (eBook, ePUB)127,99 €
- Steven L. HorstmeyerThe Weather Almanac (eBook, ePUB)197,99 €
-
-
-
This book presents an up to date view of iron biogeochemistry in the ocean. It encompasses the description of iron speciation, the analytical methods used to measure the different iron forms in seawater and the different iron biogeochemical models.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 132
- Erscheinungstermin: 22. November 2016
- Englisch
- ISBN-13: 9781119136873
- Artikelnr.: 47146665
- Verlag: John Wiley & Sons
- Seitenzahl: 132
- Erscheinungstermin: 22. November 2016
- Englisch
- ISBN-13: 9781119136873
- Artikelnr.: 47146665
Stéphane Blain, Professor, Université Pierre et Marie Curie, France. Alessandro Tagliabue, University of Liverpool, UK.
Preface ix
Chapter 1. Iron Speciation in Seawater 1
1.1. The chemical element 1
1.2. Iron speciation 2
1.2.1. Inorganic speciation 2
1.2.2. Organic speciation 3
1.2.3. Redox speciation 6
1.2.4. Operational definitions of iron speciation 11
1.3. Applying speciation 12
1.3.1. Solubility 12
1.3.2. Photochemistry 15
1.3.3. Cultures in artificial seawater with well-defined iron speciation
17
1.3.4. Iron bioavailability: the chemical perspective 18
1.3.5. Iron speciation on geological timescales 19
Chapter 2. Analytical Methods 23
2.1. Trace-metal clean sampling techniques 23
2.2. Processing of the sample before measurement of concentrations 25
2.3. Particle collection 25
2.4. Iron determination 27
2.4.1. Historical perspective 27
2.4.2. Flow injection analysis 28
2.4.3. Electrochemistry 29
2.4.4. Mass spectrometry 31
2.4.5. Iron reference samples 32
2.4.6. Probing iron bioavailability 32
Chapter 3. Modeling Methods 35
3.1. Overview 35
3.2. Modeling frameworks 36
3.3. Modeling iron cycle processes 36
3.3.1. Modeling iron supply 37
3.3.2. Modeling iron speciation 37
3.3.3. Modeling biological uptake of iron 40
3.3.4. Modeling iron regeneration 42
3.4. Synthesis 43
Chapter 4. Iron Sources 45
4.1. Overview 45
4.2. Dust deposition 45
4.3. River supply 47
4.4. Continental margins 49
4.5. Hydrothermalism 50
4.6. Glaciers, icebergs and sea ice 52
4.7. Submarine groundwater discharge 54
4.8. Synthesis 54
Chapter 5. Iron Cycling in the Ocean 55
5.1. The biological iron demand 55
5.1.1. Phytoplankton iron requirement 55
5.1.2. Iron requirements of heterotrophic organisms 61
5.2. Iron cycling in the surface ocean 62
5.3. Iron export and its cycling below the mixed layer 65
Chapter 6. Dissolved Iron Distributions in the Ocean 69
6.1. Overview 69
6.2. Temporal evolution in the number of observations 69
6.3. The contemporary view of the distribution of iron in the ocean 72
6.4. The vertical profile of iron 74
6.5. Synthesis 77
Chapter 7. The Iron Hypothesis 79
7.1. Introduction 79
7.2. From bottle incubations to mesoscale experiments 81
7.3. Natural iron fertilization 84
7.4. Paleo iron hypothesis 87
7.5. Large-scale iron fertilization: climate engineering 89
Bibliography 91
Index 117
Chapter 1. Iron Speciation in Seawater 1
1.1. The chemical element 1
1.2. Iron speciation 2
1.2.1. Inorganic speciation 2
1.2.2. Organic speciation 3
1.2.3. Redox speciation 6
1.2.4. Operational definitions of iron speciation 11
1.3. Applying speciation 12
1.3.1. Solubility 12
1.3.2. Photochemistry 15
1.3.3. Cultures in artificial seawater with well-defined iron speciation
17
1.3.4. Iron bioavailability: the chemical perspective 18
1.3.5. Iron speciation on geological timescales 19
Chapter 2. Analytical Methods 23
2.1. Trace-metal clean sampling techniques 23
2.2. Processing of the sample before measurement of concentrations 25
2.3. Particle collection 25
2.4. Iron determination 27
2.4.1. Historical perspective 27
2.4.2. Flow injection analysis 28
2.4.3. Electrochemistry 29
2.4.4. Mass spectrometry 31
2.4.5. Iron reference samples 32
2.4.6. Probing iron bioavailability 32
Chapter 3. Modeling Methods 35
3.1. Overview 35
3.2. Modeling frameworks 36
3.3. Modeling iron cycle processes 36
3.3.1. Modeling iron supply 37
3.3.2. Modeling iron speciation 37
3.3.3. Modeling biological uptake of iron 40
3.3.4. Modeling iron regeneration 42
3.4. Synthesis 43
Chapter 4. Iron Sources 45
4.1. Overview 45
4.2. Dust deposition 45
4.3. River supply 47
4.4. Continental margins 49
4.5. Hydrothermalism 50
4.6. Glaciers, icebergs and sea ice 52
4.7. Submarine groundwater discharge 54
4.8. Synthesis 54
Chapter 5. Iron Cycling in the Ocean 55
5.1. The biological iron demand 55
5.1.1. Phytoplankton iron requirement 55
5.1.2. Iron requirements of heterotrophic organisms 61
5.2. Iron cycling in the surface ocean 62
5.3. Iron export and its cycling below the mixed layer 65
Chapter 6. Dissolved Iron Distributions in the Ocean 69
6.1. Overview 69
6.2. Temporal evolution in the number of observations 69
6.3. The contemporary view of the distribution of iron in the ocean 72
6.4. The vertical profile of iron 74
6.5. Synthesis 77
Chapter 7. The Iron Hypothesis 79
7.1. Introduction 79
7.2. From bottle incubations to mesoscale experiments 81
7.3. Natural iron fertilization 84
7.4. Paleo iron hypothesis 87
7.5. Large-scale iron fertilization: climate engineering 89
Bibliography 91
Index 117
Preface ix
Chapter 1. Iron Speciation in Seawater 1
1.1. The chemical element 1
1.2. Iron speciation 2
1.2.1. Inorganic speciation 2
1.2.2. Organic speciation 3
1.2.3. Redox speciation 6
1.2.4. Operational definitions of iron speciation 11
1.3. Applying speciation 12
1.3.1. Solubility 12
1.3.2. Photochemistry 15
1.3.3. Cultures in artificial seawater with well-defined iron speciation
17
1.3.4. Iron bioavailability: the chemical perspective 18
1.3.5. Iron speciation on geological timescales 19
Chapter 2. Analytical Methods 23
2.1. Trace-metal clean sampling techniques 23
2.2. Processing of the sample before measurement of concentrations 25
2.3. Particle collection 25
2.4. Iron determination 27
2.4.1. Historical perspective 27
2.4.2. Flow injection analysis 28
2.4.3. Electrochemistry 29
2.4.4. Mass spectrometry 31
2.4.5. Iron reference samples 32
2.4.6. Probing iron bioavailability 32
Chapter 3. Modeling Methods 35
3.1. Overview 35
3.2. Modeling frameworks 36
3.3. Modeling iron cycle processes 36
3.3.1. Modeling iron supply 37
3.3.2. Modeling iron speciation 37
3.3.3. Modeling biological uptake of iron 40
3.3.4. Modeling iron regeneration 42
3.4. Synthesis 43
Chapter 4. Iron Sources 45
4.1. Overview 45
4.2. Dust deposition 45
4.3. River supply 47
4.4. Continental margins 49
4.5. Hydrothermalism 50
4.6. Glaciers, icebergs and sea ice 52
4.7. Submarine groundwater discharge 54
4.8. Synthesis 54
Chapter 5. Iron Cycling in the Ocean 55
5.1. The biological iron demand 55
5.1.1. Phytoplankton iron requirement 55
5.1.2. Iron requirements of heterotrophic organisms 61
5.2. Iron cycling in the surface ocean 62
5.3. Iron export and its cycling below the mixed layer 65
Chapter 6. Dissolved Iron Distributions in the Ocean 69
6.1. Overview 69
6.2. Temporal evolution in the number of observations 69
6.3. The contemporary view of the distribution of iron in the ocean 72
6.4. The vertical profile of iron 74
6.5. Synthesis 77
Chapter 7. The Iron Hypothesis 79
7.1. Introduction 79
7.2. From bottle incubations to mesoscale experiments 81
7.3. Natural iron fertilization 84
7.4. Paleo iron hypothesis 87
7.5. Large-scale iron fertilization: climate engineering 89
Bibliography 91
Index 117
Chapter 1. Iron Speciation in Seawater 1
1.1. The chemical element 1
1.2. Iron speciation 2
1.2.1. Inorganic speciation 2
1.2.2. Organic speciation 3
1.2.3. Redox speciation 6
1.2.4. Operational definitions of iron speciation 11
1.3. Applying speciation 12
1.3.1. Solubility 12
1.3.2. Photochemistry 15
1.3.3. Cultures in artificial seawater with well-defined iron speciation
17
1.3.4. Iron bioavailability: the chemical perspective 18
1.3.5. Iron speciation on geological timescales 19
Chapter 2. Analytical Methods 23
2.1. Trace-metal clean sampling techniques 23
2.2. Processing of the sample before measurement of concentrations 25
2.3. Particle collection 25
2.4. Iron determination 27
2.4.1. Historical perspective 27
2.4.2. Flow injection analysis 28
2.4.3. Electrochemistry 29
2.4.4. Mass spectrometry 31
2.4.5. Iron reference samples 32
2.4.6. Probing iron bioavailability 32
Chapter 3. Modeling Methods 35
3.1. Overview 35
3.2. Modeling frameworks 36
3.3. Modeling iron cycle processes 36
3.3.1. Modeling iron supply 37
3.3.2. Modeling iron speciation 37
3.3.3. Modeling biological uptake of iron 40
3.3.4. Modeling iron regeneration 42
3.4. Synthesis 43
Chapter 4. Iron Sources 45
4.1. Overview 45
4.2. Dust deposition 45
4.3. River supply 47
4.4. Continental margins 49
4.5. Hydrothermalism 50
4.6. Glaciers, icebergs and sea ice 52
4.7. Submarine groundwater discharge 54
4.8. Synthesis 54
Chapter 5. Iron Cycling in the Ocean 55
5.1. The biological iron demand 55
5.1.1. Phytoplankton iron requirement 55
5.1.2. Iron requirements of heterotrophic organisms 61
5.2. Iron cycling in the surface ocean 62
5.3. Iron export and its cycling below the mixed layer 65
Chapter 6. Dissolved Iron Distributions in the Ocean 69
6.1. Overview 69
6.2. Temporal evolution in the number of observations 69
6.3. The contemporary view of the distribution of iron in the ocean 72
6.4. The vertical profile of iron 74
6.5. Synthesis 77
Chapter 7. The Iron Hypothesis 79
7.1. Introduction 79
7.2. From bottle incubations to mesoscale experiments 81
7.3. Natural iron fertilization 84
7.4. Paleo iron hypothesis 87
7.5. Large-scale iron fertilization: climate engineering 89
Bibliography 91
Index 117