F. Tölke
Jacobische elliptische Funktionen, Legendresche elliptische Normalintegrale und spezielle Weierstraßsche Zeta- und Sigma-Funktionen (eBook, PDF)
-21%11
29,99 €
37,99 €**
29,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
15 °P sammeln
-21%11
29,99 €
37,99 €**
29,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
15 °P sammeln
Als Download kaufen
37,99 €****
-21%11
29,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
15 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
37,99 €****
-21%11
29,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
15 °P sammeln
F. Tölke
Jacobische elliptische Funktionen, Legendresche elliptische Normalintegrale und spezielle Weierstraßsche Zeta- und Sigma-Funktionen (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 15.1MB
Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 180
- Erscheinungstermin: 8. März 2013
- Deutsch
- ISBN-13: 9783642502637
- Artikelnr.: 53157270
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
5 Jacobische elliptische Funktionen und zugehörige logarithmische Ableitungen.- 108. Definitionen.- 109. Funktionalgleichungen.- 110. Periodenverhalten und Substitutionen.- 111. Funktionswerte an den Stellen $$ 0,pm frac{1}{2},;pm frac{{ix}}{2},;pm frac{1}{2},;pm frac{{ix}}{2} $$ bzw. $$ 0,pm K,;pm iK',;pm Kpm iK' $$.- 112. Trigonometrische und hyperbolische Reihenentwicklungen.- 113. Potenzreihen-Entwicklungen.- 114. Imaginäre Argumenttransformation, reziproke Modultransformation und imaginäre Modultransformation.- 115. Ableitungen.- 116. Gausssche und Landensche Transformation. Substitutionen für $$ zeta pm frac{1}{4};und;zeta pm frac{{ix}}{4} $$.- 117. Additionstheoreme. Transformationsgleichungen für doppeltes und halbes Argument. Weitere Substitutionen für $$ zeta pm frac{1}{4};und;zeta pm frac{{ix}}{4};sowie;fur;zeta pm frac{1}{4}pm frac{{ix}}{4} $$.- 118. Die Logarithmen der logarithmischen Ableitungen der Jacobischen elliptischen Funktionen.- 119. Übergänge vom (?, ?)-System auf das (z, k)-System.- 120. Funktionsverlauf der Jacobischen elliptischen Funktionen und der zugehörigen Ableitungen und logarithmischen Ableitungen im Reellen. Ausartungen.- 121. Differentialgleichungen erster und zweiter Ordnung.- 122. Die Integrale der Jacobischen elliptischen Funktionen.- 123. Die Integrale der logarithmischen Ableitungen der Jacobischen elliptischen Funktionen.- 6 Umkehrfunktionen der Jacobischen elliptischen Funktionen und elliptische Normalintegrale erster Gattung. Elliptische Amplitudenfunktion sowie Legendresche F- und E-Funktion. Elliptische Normalintegrale zweiter Gattung. Jacobische Zeta- und Heumansche Lambda-Funktion.- 124. Die 18 Umkehrfunktionen der Jacobischen elliptischen Funktionen und ihrerlogarithmischen Ableitungen. (Elliptische Normalintegrale erster Gattung.) Additionstheoreme der Umkehrfunktionen.- 125. Elliptische Normalintegrale erster Gattung in hyperbolischer Form.- 126. Potenzreihen-Entwicklungen der Umkehrfunktionen.- 127. Die elliptische Amplitudenfunktion ? = am(z, k) und ihre Umkehrfunktion z = F(?, k). Die vier trigonometrischen Legendreschen Normalintegrale erster Gattung.- 128. Darstellung der 18 Umkehrfunktionen und der elliptischen Normalintegrale erster Gattung durch die Funktion F. Die vier hyperbolischen Legendreschen Normalintegrale erster Gattung und die Funktion F für imaginäres Argument.- 129. Die Legendresche E-Funktion für reelles und imaginäres Argument.- 130. Die 18 Integrale der Quadrate der Jacobischen elliptischen Funktionen und ihrer logarithmischen Ableitungen, die 12 durch Umformung der letzteren entstehenden hyperbolischen Integrale, die 24 Normalintegrale zweiter Gattung und die acht trigonometrischen und hyperbolischen Legendreschen Normalintegrale zweiter Gattung.- 131. Die 46 Normalintegrale erster und zweiter Gattung mit linearen trigonometrischen und hyperbolischen Funktionen.- 132. Jacobische Zeta-Funktion und Heumansche Lambda-Funktion.- 7 Normalintegrale dritter Gattung. Legendresche ?-Funktion. Zurückführung des allgemeinen elliptischen Integrals auf Normalintegrale erster, zweiter und dritter Gattung.- 133. Die 96 Normalintegrale dritter Gattung in Jacobischer Form.- 134. Die acht zu den logarithmischen Ableitungen der Jacobischen elliptischen Funktionen gehörigen Normalintegrale dritter Gattung.- 135. 48 Quotientenintegrale und 48 spezielle Normalintegrale dritter Gattung in der Jacobischen Form.- 136. Algebraische Form der elliptischen Normalintegrale dritter Gattung.- 137. Darstellung dervollständigen Normalintegrale dritter Gattung durch Jacobische Zeta- und Heumansche Lambda-Funktionen.- 138. Die ?-Funktion und die Integrale dritter Gattung in trigonometrischer Form.- 139. Die 48 speziellen Normalintegrale dritter Gattung in algebraischer Form.- 140. Weitere sechs spezielle Normalintegrale dritter Gattung.- 141. Zurückführung des allgemeinen elliptischen Integrals in der Legendreschen Form auf Normalintegrale erster, zweiter und dritter Gattung.- 8 Spezielle Weierstraßsche Zeta-Funktionen.- 142. Definitions- und Funktionalgleichungen.- 143. Substitutionen.- 144. Relatives Periodenverhalten. Spezielle Funktionswerte. Funktionsverlauf.- 145. Lineare Beziehungen zu den logarithmischen Ableitungen der Jacobischen elliptischen Funktionen und deren Ableitungen.- 146. Integrale der ?-Funktionen als Weierstrasssche Zeta-Funktionen und Ableitungen der Zeta-Funktionen.- 147. Differentialtransformationen für doppelte und halbe Parameter.- 148. Gausssche und Landensche Transformation.- 149. Additionstheoreme und Transformationsgleichungen für doppeltes und halbes Argument.- 150. Trigonometrische, hyperbolische und Potenzreihen-Entwicklungen.- 151. Homogenitätstransformation der Funktionen 1 und 5.- 152. Imaginäre Transformation der Zeta-Funktionen.- 153. Differentialgleichungen.- 9 Spezielle Weierstraßsche Sigma-Funktionen.- 154. Spezielle Weierstrasssche Sigma-Funktionen und zweite logarithmische Ableitungen der Produkte der Theta-Funktionen.- 155. Partielle Differentialgleichungen der Sigma-Funktionen.- 156. Die Jacobischen elliptischen Funktionen und zwei ihrer logarithmischen Ableitungen als Quotienten von Sigma-Funktionen. Neufassung der Additionstheoreme der Jacobischen elliptischen Funktionen. Viererprodukte.
5 Jacobische elliptische Funktionen und zugehörige logarithmische Ableitungen.- 108. Definitionen.- 109. Funktionalgleichungen.- 110. Periodenverhalten und Substitutionen.- 111. Funktionswerte an den Stellen $$ 0,pm frac{1}{2},;pm frac{{ix}}{2},;pm frac{1}{2},;pm frac{{ix}}{2} $$ bzw. $$ 0,pm K,;pm iK',;pm Kpm iK' $$.- 112. Trigonometrische und hyperbolische Reihenentwicklungen.- 113. Potenzreihen-Entwicklungen.- 114. Imaginäre Argumenttransformation, reziproke Modultransformation und imaginäre Modultransformation.- 115. Ableitungen.- 116. Gausssche und Landensche Transformation. Substitutionen für $$ zeta pm frac{1}{4};und;zeta pm frac{{ix}}{4} $$.- 117. Additionstheoreme. Transformationsgleichungen für doppeltes und halbes Argument. Weitere Substitutionen für $$ zeta pm frac{1}{4};und;zeta pm frac{{ix}}{4};sowie;fur;zeta pm frac{1}{4}pm frac{{ix}}{4} $$.- 118. Die Logarithmen der logarithmischen Ableitungen der Jacobischen elliptischen Funktionen.- 119. Übergänge vom (?, ?)-System auf das (z, k)-System.- 120. Funktionsverlauf der Jacobischen elliptischen Funktionen und der zugehörigen Ableitungen und logarithmischen Ableitungen im Reellen. Ausartungen.- 121. Differentialgleichungen erster und zweiter Ordnung.- 122. Die Integrale der Jacobischen elliptischen Funktionen.- 123. Die Integrale der logarithmischen Ableitungen der Jacobischen elliptischen Funktionen.- 6 Umkehrfunktionen der Jacobischen elliptischen Funktionen und elliptische Normalintegrale erster Gattung. Elliptische Amplitudenfunktion sowie Legendresche F- und E-Funktion. Elliptische Normalintegrale zweiter Gattung. Jacobische Zeta- und Heumansche Lambda-Funktion.- 124. Die 18 Umkehrfunktionen der Jacobischen elliptischen Funktionen und ihrerlogarithmischen Ableitungen. (Elliptische Normalintegrale erster Gattung.) Additionstheoreme der Umkehrfunktionen.- 125. Elliptische Normalintegrale erster Gattung in hyperbolischer Form.- 126. Potenzreihen-Entwicklungen der Umkehrfunktionen.- 127. Die elliptische Amplitudenfunktion ? = am(z, k) und ihre Umkehrfunktion z = F(?, k). Die vier trigonometrischen Legendreschen Normalintegrale erster Gattung.- 128. Darstellung der 18 Umkehrfunktionen und der elliptischen Normalintegrale erster Gattung durch die Funktion F. Die vier hyperbolischen Legendreschen Normalintegrale erster Gattung und die Funktion F für imaginäres Argument.- 129. Die Legendresche E-Funktion für reelles und imaginäres Argument.- 130. Die 18 Integrale der Quadrate der Jacobischen elliptischen Funktionen und ihrer logarithmischen Ableitungen, die 12 durch Umformung der letzteren entstehenden hyperbolischen Integrale, die 24 Normalintegrale zweiter Gattung und die acht trigonometrischen und hyperbolischen Legendreschen Normalintegrale zweiter Gattung.- 131. Die 46 Normalintegrale erster und zweiter Gattung mit linearen trigonometrischen und hyperbolischen Funktionen.- 132. Jacobische Zeta-Funktion und Heumansche Lambda-Funktion.- 7 Normalintegrale dritter Gattung. Legendresche ?-Funktion. Zurückführung des allgemeinen elliptischen Integrals auf Normalintegrale erster, zweiter und dritter Gattung.- 133. Die 96 Normalintegrale dritter Gattung in Jacobischer Form.- 134. Die acht zu den logarithmischen Ableitungen der Jacobischen elliptischen Funktionen gehörigen Normalintegrale dritter Gattung.- 135. 48 Quotientenintegrale und 48 spezielle Normalintegrale dritter Gattung in der Jacobischen Form.- 136. Algebraische Form der elliptischen Normalintegrale dritter Gattung.- 137. Darstellung dervollständigen Normalintegrale dritter Gattung durch Jacobische Zeta- und Heumansche Lambda-Funktionen.- 138. Die ?-Funktion und die Integrale dritter Gattung in trigonometrischer Form.- 139. Die 48 speziellen Normalintegrale dritter Gattung in algebraischer Form.- 140. Weitere sechs spezielle Normalintegrale dritter Gattung.- 141. Zurückführung des allgemeinen elliptischen Integrals in der Legendreschen Form auf Normalintegrale erster, zweiter und dritter Gattung.- 8 Spezielle Weierstraßsche Zeta-Funktionen.- 142. Definitions- und Funktionalgleichungen.- 143. Substitutionen.- 144. Relatives Periodenverhalten. Spezielle Funktionswerte. Funktionsverlauf.- 145. Lineare Beziehungen zu den logarithmischen Ableitungen der Jacobischen elliptischen Funktionen und deren Ableitungen.- 146. Integrale der ?-Funktionen als Weierstrasssche Zeta-Funktionen und Ableitungen der Zeta-Funktionen.- 147. Differentialtransformationen für doppelte und halbe Parameter.- 148. Gausssche und Landensche Transformation.- 149. Additionstheoreme und Transformationsgleichungen für doppeltes und halbes Argument.- 150. Trigonometrische, hyperbolische und Potenzreihen-Entwicklungen.- 151. Homogenitätstransformation der Funktionen 1 und 5.- 152. Imaginäre Transformation der Zeta-Funktionen.- 153. Differentialgleichungen.- 9 Spezielle Weierstraßsche Sigma-Funktionen.- 154. Spezielle Weierstrasssche Sigma-Funktionen und zweite logarithmische Ableitungen der Produkte der Theta-Funktionen.- 155. Partielle Differentialgleichungen der Sigma-Funktionen.- 156. Die Jacobischen elliptischen Funktionen und zwei ihrer logarithmischen Ableitungen als Quotienten von Sigma-Funktionen. Neufassung der Additionstheoreme der Jacobischen elliptischen Funktionen. Viererprodukte.