Transform your data science workflows with Julia's lightning-fast performance. This practical guide helps Python and R developers transition to Julia for large-scale scientific computing, machine learning, and numerical analysis. Features real-world case studies, optimization techniques, and integration with popular data science tools. Includes parallel computing patterns and best practices for production deployment.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, CY, CZ, D, DK, EW, E, FIN, F, GR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.