Kidney and Kidney Tumor Segmentation (eBook, PDF)
MICCAI 2021 Challenge, KiTS 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings
Redaktion: Heller, Nicholas; Weight, Christopher; Papanikolopoulos, Nikolaos; Tejpaul, Resha; Trofimova, Darya; Isensee, Fabian
-24%11
44,95 €
58,84 €**
44,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
22 °P sammeln
-24%11
44,95 €
58,84 €**
44,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
22 °P sammeln
Als Download kaufen
58,84 €****
-24%11
44,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
22 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
58,84 €****
-24%11
44,95 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
22 °P sammeln
Kidney and Kidney Tumor Segmentation (eBook, PDF)
MICCAI 2021 Challenge, KiTS 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings
Redaktion: Heller, Nicholas; Weight, Christopher; Papanikolopoulos, Nikolaos; Tejpaul, Resha; Trofimova, Darya; Isensee, Fabian
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
![](https://bilder.buecher.de/images/aktion/tolino/tolino-select-logo.png)
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
![](https://bilder.buecher.de/images/aktion/tolino/tolino-select-logo.png)
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book constitutes the Second International Challenge on Kidney and Kidney Tumor Segmentation, KiTS 2021, which was held in conjunction with the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2021. The challenge took place virtually on September 27, 2021, due to the COVID-19 pandemic.
The 21 contributions presented were carefully reviewed and selected from 29 submissions. This challenge aims to develop the best system for automatic semantic segmentation of renal tumors and surrounding anatomy.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 31.83MB
Andere Kunden interessierten sich auch für
- -23%11Head and Neck Tumor Segmentation and Outcome Prediction (eBook, PDF)61,95 €
- Head and Neck Tumor Segmentation (eBook, PDF)40,95 €
- Head and Neck Tumor Segmentation and Outcome Prediction (eBook, PDF)53,95 €
- Medical Image Computing and Computer Assisted Intervention - MICCAI 2022 (eBook, PDF)40,95 €
- Kidney and Kidney Tumor Segmentation (eBook, PDF)40,95 €
- Diabetic Foot Ulcers Grand Challenge (eBook, PDF)44,95 €
- Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (eBook, PDF)40,95 €
-
-
- -24%11
This book constitutes the Second International Challenge on Kidney and Kidney Tumor Segmentation, KiTS 2021, which was held in conjunction with the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2021. The challenge took place virtually on September 27, 2021, due to the COVID-19 pandemic.
The 21 contributions presented were carefully reviewed and selected from 29 submissions. This challenge aims to develop the best system for automatic semantic segmentation of renal tumors and surrounding anatomy.
The 21 contributions presented were carefully reviewed and selected from 29 submissions. This challenge aims to develop the best system for automatic semantic segmentation of renal tumors and surrounding anatomy.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer International Publishing
- Seitenzahl: 165
- Erscheinungstermin: 24. März 2022
- Englisch
- ISBN-13: 9783030983857
- Artikelnr.: 63653836
- Verlag: Springer International Publishing
- Seitenzahl: 165
- Erscheinungstermin: 24. März 2022
- Englisch
- ISBN-13: 9783030983857
- Artikelnr.: 63653836
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Automated kidney tumor segmentation with convolution and transformer network.- Extraction of Kidney Anatomy based on a 3D U-ResNet with Overlap-Tile Strategy.- Modified nnU-Net for the MICCAI KiTS21 Challenge.- 2.5D Cascaded Semantic Segmentation for Kidney Tumor Cyst.- Automated Machine Learning algorithm for Kidney, Kidney tumor, Kidney Cyst segmentation in Computed Tomography Scans.- Three Uses of One Neural Network: Automatic Segmentation of Kidney Tumor and Cysts Based on 3D U-Net.- Less is More: Contrast Attention assisted U-Net for Kidney, Tumor and Cyst Segmentations.- A Coarse-to-fine Framework for The 2021 Kidney and Kidney Tumor Segmentation Challenge.- Kidney and kidney tumor segmentation using a two-stage cascade framework.- Squeeze-and-Excitation Encoder-Decoder Network for Kidney and Kidney Tumor Segmentation in CT images.- A Two-stage Cascaded Deep Neural Network with Multi-decoding Paths for Kidney Tumor Segmentation.- Mixup Augmentation for Kidney and Kidney TumorSegmentation.- Automatic Segmentation in Abdominal CT Imaging for the KiTS21 Challenge.- An Ensemble of 3D U-Net Based Models for Segmentation of Kidney and Masses in CT Scans.- Contrast-Enhanced CT Renal Tumor Segmentation.- A Cascaded 3D Segmentation Model for Renal Enhanced CT Images.- Leveraging Clinical Characteristics for Improved Deep Learning-Based Kidney Tumor Segmentation on CT.- A Coarse-to-Fine 3D U-Net Network for Semantic Segmentation of Kidney CT Scans.- 3D U-Net Based Semantic Segmentation of Kidneys and Renal Masses on Contrast-Enhanced CT.- Kidney and Kidney Tumor Segmentation using Spatial and Channel attention enhanced U-Net Transfer Learning for KiTS21 Challenge.
Automated kidney tumor segmentation with convolution and transformer network.- Extraction of Kidney Anatomy based on a 3D U-ResNet with Overlap-Tile Strategy.- Modified nnU-Net for the MICCAI KiTS21 Challenge.- 2.5D Cascaded Semantic Segmentation for Kidney Tumor Cyst.- Automated Machine Learning algorithm for Kidney, Kidney tumor, Kidney Cyst segmentation in Computed Tomography Scans.- Three Uses of One Neural Network: Automatic Segmentation of Kidney Tumor and Cysts Based on 3D U-Net.- Less is More: Contrast Attention assisted U-Net for Kidney, Tumor and Cyst Segmentations.- A Coarse-to-fine Framework for The 2021 Kidney and Kidney Tumor Segmentation Challenge.- Kidney and kidney tumor segmentation using a two-stage cascade framework.- Squeeze-and-Excitation Encoder-Decoder Network for Kidney and Kidney Tumor Segmentation in CT images.- A Two-stage Cascaded Deep Neural Network with Multi-decoding Paths for Kidney Tumor Segmentation.- Mixup Augmentation for Kidney and Kidney TumorSegmentation.- Automatic Segmentation in Abdominal CT Imaging for the KiTS21 Challenge.- An Ensemble of 3D U-Net Based Models for Segmentation of Kidney and Masses in CT Scans.- Contrast-Enhanced CT Renal Tumor Segmentation.- A Cascaded 3D Segmentation Model for Renal Enhanced CT Images.- Leveraging Clinical Characteristics for Improved Deep Learning-Based Kidney Tumor Segmentation on CT.- A Coarse-to-Fine 3D U-Net Network for Semantic Segmentation of Kidney CT Scans.- 3D U-Net Based Semantic Segmentation of Kidneys and Renal Masses on Contrast-Enhanced CT.- Kidney and Kidney Tumor Segmentation using Spatial and Channel attention enhanced U-Net Transfer Learning for KiTS21 Challenge.