73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
37 °P sammeln
73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
37 °P sammeln
Als Download kaufen
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
37 °P sammeln
Jetzt verschenken
73,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
37 °P sammeln
  • Format: PDF

This book presents the fundamentals of irreversible thermodynamics for nonlinear transport processes in gases and liquids, as well as for generalized hydrodynamics extending the classical hydrodynamics of Navier, Stokes, Fourier, and Fick. Together with its companion volume on nonrelativistic contexts, it provides a comprehensive picture of the relativistic covariant kinetic theory of gases and relativistic hydrodynamics of gases.Relativistic theories of macroscopic irreversible processes must strictly conform to the thermodynamic laws at every step and in all approximations that enter their…mehr

Produktbeschreibung
This book presents the fundamentals of irreversible thermodynamics for nonlinear transport processes in gases and liquids, as well as for generalized hydrodynamics extending the classical hydrodynamics of Navier, Stokes, Fourier, and Fick. Together with its companion volume on nonrelativistic contexts, it provides a comprehensive picture of the relativistic covariant kinetic theory of gases and relativistic hydrodynamics of gases.Relativistic theories of macroscopic irreversible processes must strictly conform to the thermodynamic laws at every step and in all approximations that enter their derivation from the mechanical principles. Upholding this as the inviolable tenet, the author develops theories of irreversible transport processes in fluids (gases or liquids). They apply regardless of whether the processes are near to or far removed from equilibrium, or whether they are linear or nonlinear with respect to macroscopic fluxes or thermodynamic forces.

The irreversible covariant Boltzmann as well as the covariant form of the Boltzmann-Nordheim-Uehling-Uhlenbeck equation is used for deriving theories of irreversible transport equations and generalized hydrodynamic equations for either classical gases or quantum gases. They all conform rigorously to the tenet. All macroscopic observables described by the so-formulated theories therefore are likewise expected to strictly obey the tenet.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
The author Byung Chan Eu received a BSc degree from Seoul National University, Korea and a PhD degree from Brown University, USA. After a research fellowship at Harvard University he has been on the staff of the Chemistry Department, McGill University since 1967. At present he is a professor emeritus carrying on research. He has served as an adjunct professor at the Korea Institute of Advanced Science and as either visiting professor or visiting scholar at MIT, Standford University, Korea Advanced Institute of Science and Technology, and Université Libre de Bruxelles. He is the author of 5 monographs on kinetic theory, nonequilibrium statistical mechanics, generalized thermodynamics, transport processes of fluids, semiclassical theory of molecular scattering, and a textbook on chemical thermodynamics and numerous original papers on scattering theories, kinetic theories, statistical mechanics, transport coefficients, and fluid mechanics in the leading journals of the fields.