Diese Arbeit handelt von Abschätzungen der L1-Norm einer Eigenfunktion eines elliptischen Differentialoperators durch ihre L2-Norm. Derartige Abschätzungen finden beispielsweise beim Vergleich von Wärmeinhalt und Wärmespur in der Physik ihre Anwendung.
Es werden L1-Abschätzungen bewiesen für Eigenfunktionen
− des Laplace-Operators mit Dirichletschen Randbedingungen für Eigenwerte unterhalb des wesentlichen Spektrums,
− des Laplace-Operators mit Dirichletschen Randbedingungen für Eigenwerte in einer Lücke des wesentlichen Spektrums,
− von Schrödinger-Operatoren mit Dirichletschen Randbedingungen und Potentialen aus der (lokalen) Kato-Klasse für Eigenwerte unterhalb des wesentlichen Spektrums.
Als Hilfsmittel werden Lokalisierungsformeln für den Laplace-Operator sowie seine Resolvente und für Schrödinger-Operatoren hergeleitet; weitere Hilfsmittel sind Abschätzungen von Integralkernen.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.