73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
37 °P sammeln
73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
37 °P sammeln
Als Download kaufen
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
37 °P sammeln
Jetzt verschenken
73,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
37 °P sammeln
  • Format: PDF

This thesis describes novel substrate embedded physical sensors that can be used to monitor different types of cell-based assays non-invasively and label-free. The sensors described provide integrative information of the cells under study with an adaptable time resolution (ranging from milliseconds to days). This information about the dynamic cell response to chemical, physical or biological stimuli defines a new paradigm in fundamental biomedical research. The author, Maximilian Oberleitner, describes approaches in which the cells are directly grown on different sensor surfaces (gold-film…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 33.25MB
Produktbeschreibung
This thesis describes novel substrate embedded physical sensors that can be used to monitor different types of cell-based assays non-invasively and label-free. The sensors described provide integrative information of the cells under study with an adaptable time resolution (ranging from milliseconds to days). This information about the dynamic cell response to chemical, physical or biological stimuli defines a new paradigm in fundamental biomedical research.
The author, Maximilian Oberleitner, describes approaches in which the cells are directly grown on different sensor surfaces (gold-film electrodes, shear wave resonators or dye-doped polymer films). This approach, with the reacting cells in particularly close proximity and contact with the sensor surface, is key to a remarkable sensitivity, opening the way for a variety of new applications. This thesis not only introduces the fundamentals of each approach, but it also describes in great detail the design principles
and elucidates the boundary conditions of the new sensors.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Maximilian Oberleitner was born in 1983 in Bavaria, Germany and graduated from the University of Regensburg with a Diploma in Chemistry in 2008. Based on this doctoral thesis "Label-free and Multi-parametric Monitoring of Cell-based Assays with Substrate-embedded Sensors" he obtained his PhD in Analytical Chemistry in 2016 in the Institute of Analytical Chemistry, Chemo- and Biosensors at the University of Regensburg under the supervision of Prof. Dr. Joachim Wegener. His research work was focused on the development and improvement of substrate-integrated sensors for the analysis of living cells. These sensors enable the monitoring of cell-substrate interactions and the real-time analysis of assays with adherently grown cells in a non-invasive, label-free and - by combinations of the different types of sensors - even in a multi-parametric manner. Since 2015 he works at a global healthcare company in Austria. As project leader in the quality unit he is responsible for stability studiesand quality evaluations of antibiotics.