The volume investigates the structure of eigenvectors and looks at the number of their sign graphs ("nodal domains"), Perron components, graphs with extremal properties with respect to eigenvectors. The Rayleigh quotient and rearrangement of graphs form the main methodology.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
"This is an interesting ... book about a very specialized topic in spectral graph theory, namely the eigenvectors of the (generalized) Laplacian matrices of graphs. ... Overall I found the book well worth reading, with a clear and novel presentation of some interesting ideas." (Gordon F. Royle, Mathematical Reviews, Issue 2009 a)
"The present book covers a narrow topic on the border of graph theory, geometry and analysis. ... The intended readership is broad. ... The presentation is ... clear. It is certainly stimulating and well worth to read for graduate students or researchers who encounter eigenvectors connected to discrete or continuous/geometrical structures." (Péter Hajnal, Acta Scientiarum Mathematicarum, Vol. 75, 2009)