Alejandro D. de Acosta
Large Deviations for Markov Chains (eBook, PDF)
93,95 €
93,95 €
inkl. MwSt.
Sofort per Download lieferbar
47 °P sammeln
93,95 €
Als Download kaufen
93,95 €
inkl. MwSt.
Sofort per Download lieferbar
47 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
93,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
47 °P sammeln
Alejandro D. de Acosta
Large Deviations for Markov Chains (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
A study of large deviations for empirical measures and vector-valued additive functionals of general state space Markov chains.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 2.31MB
- FamilySharing(5)
Andere Kunden interessierten sich auch für
- Bradley EfronExponential Families in Theory and Practice (eBook, PDF)29,95 €
- Hadley WickhamR for Data Science (eBook, PDF)43,95 €
- Andrew GelmanRegression and Other Stories (eBook, PDF)38,95 €
- Yufei ZhaoGraph Theory and Additive Combinatorics (eBook, PDF)53,95 €
- Weidong YangAtlas for Large-Area Electronic Skins (eBook, PDF)16,95 €
- Ernest K. RyuLarge-Scale Convex Optimization (eBook, PDF)58,95 €
- Green Supply Chains and Environmental Benchmarking - Implications for Emerging Economies (eBook, PDF)112,95 €
-
-
-
A study of large deviations for empirical measures and vector-valued additive functionals of general state space Markov chains.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Erscheinungstermin: 27. Oktober 2022
- Englisch
- ISBN-13: 9781009063357
- Artikelnr.: 70910737
- Verlag: Cambridge University Press
- Erscheinungstermin: 27. Oktober 2022
- Englisch
- ISBN-13: 9781009063357
- Artikelnr.: 70910737
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Alejandro D. de Acosta is Professor Emeritus in the Department of Mathematics, Applied Mathematics and Statistics at Case Western Reserve University. He has taught at the University of California at Berkeley, Massachusetts Institute of Technology, Universidad Nacional de La Plata and Universidad Nacional de Buenos Aires (Argentina), Instituto Venezolano de Investigaciones Científicas, University of Wisconsin-Madison, and, since 1983, at Case Western Reserve University. He is a Fellow of the Institute of Mathematical Statistics, and has served on the editorial boards of the Annals of Probability and the Journal of Theoretical Probability. He has published research papers in a number of areas of Probability Theory.
Preface
1. Introduction
2. Lower bounds and a property of lambda
3. Upper bounds I
4. Identification and reconciliation of rate functions
5. Necessary conditions - bounds on the rate function, invariant measures, irreducibility and recurrence
6. Upper bounds II - equivalent analytic conditions
7. Upper bounds III - sufficient conditions
8. The large deviations principle for empirical measures
9. The case when S is countable and P is matrix irreducible
10. Examples
11. Large deviations for vector-valued additive functionals
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix I
Appendix J
Appendix K
References
Author index
Subject index.
1. Introduction
2. Lower bounds and a property of lambda
3. Upper bounds I
4. Identification and reconciliation of rate functions
5. Necessary conditions - bounds on the rate function, invariant measures, irreducibility and recurrence
6. Upper bounds II - equivalent analytic conditions
7. Upper bounds III - sufficient conditions
8. The large deviations principle for empirical measures
9. The case when S is countable and P is matrix irreducible
10. Examples
11. Large deviations for vector-valued additive functionals
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix I
Appendix J
Appendix K
References
Author index
Subject index.
Preface
1. Introduction
2. Lower bounds and a property of lambda
3. Upper bounds I
4. Identification and reconciliation of rate functions
5. Necessary conditions - bounds on the rate function, invariant measures, irreducibility and recurrence
6. Upper bounds II - equivalent analytic conditions
7. Upper bounds III - sufficient conditions
8. The large deviations principle for empirical measures
9. The case when S is countable and P is matrix irreducible
10. Examples
11. Large deviations for vector-valued additive functionals
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix I
Appendix J
Appendix K
References
Author index
Subject index.
1. Introduction
2. Lower bounds and a property of lambda
3. Upper bounds I
4. Identification and reconciliation of rate functions
5. Necessary conditions - bounds on the rate function, invariant measures, irreducibility and recurrence
6. Upper bounds II - equivalent analytic conditions
7. Upper bounds III - sufficient conditions
8. The large deviations principle for empirical measures
9. The case when S is countable and P is matrix irreducible
10. Examples
11. Large deviations for vector-valued additive functionals
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix I
Appendix J
Appendix K
References
Author index
Subject index.