A large number of physical phenomena are modeled by nonlinear partial differential equations, subject to appropriate initial/ boundary conditions; these equations, in general, do not admit exact solution. The present monograph gives constructive mathematical techniques which bring out large time behavior of solutions of these model equations. These approaches, in conjunction with modern computational methods, help solve physical problems in a satisfactory manner.
The asymptotic methods dealt with here include self-similarity, balancing argument, and matched asymptotic expansions. The physical models discussed in some detail here relate to porous media equation, heat equation with absorption, generalized Fisher's equation, Burgers equation and its generalizations.
A chapter each is devoted to nonlinear diffusion and fluid mechanics. The present book will be found useful by applied mathematicians, physicists, engineers and biologists, and would considerably help understand diverse natural phenomena.
The asymptotic methods dealt with here include self-similarity, balancing argument, and matched asymptotic expansions. The physical models discussed in some detail here relate to porous media equation, heat equation with absorption, generalized Fisher's equation, Burgers equation and its generalizations.
A chapter each is devoted to nonlinear diffusion and fluid mechanics. The present book will be found useful by applied mathematicians, physicists, engineers and biologists, and would considerably help understand diverse natural phenomena.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
From the reviews: "The book is mainly addressed to applied mathematicians, and it may be of interest to physicists, biologists and engineers too. It is very rich with examples and explicit calculations which may become starting points for further advances in the general theory of the large-time behavior of solutions to nonlinear PDEs. Moreover, numerical examples are given. ... The book goes through the papers and the results of several researchers, including the authors themselves, who have made great contributions to the subject in the last decades." (Andrea Marson, Mathematical Reviews, Issue 2011 d) "This monograph provides a state of the art discussion of several constructive approaches to determine the large time behavior of the solutions. ... The audience the authors have in mind are applied mathematicians, physicists, engineers and biologists who wish to understand asymptotic aspects of these diverse natural phenomena." (G. Hörmann, Monatshefte für Mathematik, Vol. 162 (2), February, 2011)