If a basic advance in physics has any practical applications, among the first are those in biology and medicine. This is quite striking when one considers even such unlikely things as the Mössbauer effect and X rays. Within a very short period of their discovery, they had welI-formulated biological and medical applications. The discovery of the laser is no exception. AIthough the theoretical basis for it was established in 1917 by Einstein, the techniques and materials necessary for building a laser were not then available. The laser has revitalized everything connected with optics. It has furnished the experimenter and the teacher with a pseudo-point source. It has translated many a theoretical experiment into one that can be realized practicalIy. The highly monochromatic and coherent aspects of the light, in addition to the high power levels that can be attained, add greatly to the usefulness in this regard. The industrial applictions range from punching holes in baby bottle nipples to a surveyor's instrument of such accuracy that it can plot tlie position of the moon relative to the earth within a few feet. Many years of very informal meeting on the subject of lasers in medicine and biology have been sponsored by the Gordon Research Conferences. The present book is an outgrowth of the discussions that took place at these meetings, aIthough it is in no sense a symposium report.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.