Cet ouvrage expose de façon détaillée la pratique de l'approche statistique bayésienne à l'aide de nombreux exemples choisis pour leur intérêt pédagogique. La première partie donne les principes généraux de modélisation statistique permettant d'encadrer mais aussi de venir au secours de l'imagination de l'apprenti modélisateur. En examinant des exemples de difficulté croissante, le lecteur forge les clés pour construire son propre modèle. La seconde partie présente les algorithmes de calcul les plus utiles pour estimer les inconnues du modèle. Chaque méthode d'inférence est présentée et illustrée par de nombreux cas d'applications.
Le livre cherche ainsi à dégager les éléments clés de la statistique bayésienne, en faisant l'hypothèse que le lecteur possède les bases de la théorie des probabilités et s'est déjà trouvé confronté à des problèmes ordinaires d'analyse statistique classique.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.