Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book constitutes the thoroughly refereed joint post-conference proceedings of two consecutive International Workshops on Learning Classifier Systems that took place in Seattle, WA, USA in July 2006, and in London, UK, in July 2007 - all hosted by the Genetic and Evolutionary Computation Conference, GECCO. The 14 revised full papers presented were carefully reviewed and selected from the workshop contributions. The papers are organized in topical sections on knowledge representation, analysis of the system, mechanisms, new directions, as well as applications.
This book constitutes the thoroughly refereed joint post-conference proceedings of two consecutive International Workshops on Learning Classifier Systems that took place in Seattle, WA, USA in July 2006, and in London, UK, in July 2007 - all hosted by the Genetic and Evolutionary Computation Conference, GECCO.
The 14 revised full papers presented were carefully reviewed and selected from the workshop contributions. The papers are organized in topical sections on knowledge representation, analysis of the system, mechanisms, new directions, as well as applications.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
Learning Classifier Systems: Looking Back and Glimpsing Ahead.- Knowledge Representations.- Analysis of Population Evolution in Classifier Systems Using Symbolic Representations.- Investigating Scaling of an Abstracted LCS Utilising Ternary and S-Expression Alphabets.- Evolving Fuzzy Rules with UCS: Preliminary Results.- Analysis of the System.- A Principled Foundation for LCS.- Revisiting UCS: Description, Fitness Sharing, and Comparison with XCS.- Mechanisms.- Analysis and Improvements of the Classifier Error Estimate in XCSF.- A Learning Classifier System with Mutual-Information-Based Fitness.- On Lookahead and Latent Learning in Simple LCS.- A Learning Classifier System Approach to Relational Reinforcement Learning.- Linkage Learning, Rule Representation, and the ?-Ary Extended Compact Classifier System.- New Directions.- Classifier Conditions Using Gene Expression Programming.- Evolving Classifiers Ensembles with Heterogeneous Predictors.- Substructural Surrogates for Learning Decomposable Classification Problems.- Empirical Evaluation of Ensemble Techniques for a Pittsburgh Learning Classifier System.- Applications.- Technology Extraction of Expert Operator Skills from Process Time Series Data.- Analysing Learning Classifier Systems in Reactive and Non-reactive Robotic Tasks.
Learning Classifier Systems: Looking Back and Glimpsing Ahead.- Knowledge Representations.- Analysis of Population Evolution in Classifier Systems Using Symbolic Representations.- Investigating Scaling of an Abstracted LCS Utilising Ternary and S-Expression Alphabets.- Evolving Fuzzy Rules with UCS: Preliminary Results.- Analysis of the System.- A Principled Foundation for LCS.- Revisiting UCS: Description, Fitness Sharing, and Comparison with XCS.- Mechanisms.- Analysis and Improvements of the Classifier Error Estimate in XCSF.- A Learning Classifier System with Mutual-Information-Based Fitness.- On Lookahead and Latent Learning in Simple LCS.- A Learning Classifier System Approach to Relational Reinforcement Learning.- Linkage Learning, Rule Representation, and the ?-Ary Extended Compact Classifier System.- New Directions.- Classifier Conditions Using Gene Expression Programming.- Evolving Classifiers Ensembles with Heterogeneous Predictors.- Substructural Surrogates for Learning Decomposable Classification Problems.- Empirical Evaluation of Ensemble Techniques for a Pittsburgh Learning Classifier System.- Applications.- Technology Extraction of Expert Operator Skills from Process Time Series Data.- Analysing Learning Classifier Systems in Reactive and Non-reactive Robotic Tasks.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826