Learning Classifier Systems (eBook, PDF)
International Workshops, IWLCS 2003-2005, Revised Selected Papers
Redaktion: Kovacs, Tim; Wilson, Stewart W.; Stolzmann, Wolfgang; Lanzi, Pier Luca; Takadama, Keiki; Llorà, Xavier
40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
40,95 €
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
20 °P sammeln
Learning Classifier Systems (eBook, PDF)
International Workshops, IWLCS 2003-2005, Revised Selected Papers
Redaktion: Kovacs, Tim; Wilson, Stewart W.; Stolzmann, Wolfgang; Lanzi, Pier Luca; Takadama, Keiki; Llorà, Xavier
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book constitutes the thoroughly refereed joint post-proceedings of three consecutive International Workshops on Learning Classifier Systems that took place in Chicago, IL in July 2003, in Seattle, WA in June 2004, and in Washington, DC in June 2005. Topics in the 22 revised full papers range from theoretical analysis of mechanisms to practical consideration for successful application of such techniques to everyday datamining tasks.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 13.53MB
Andere Kunden interessierten sich auch für
- Learning Classifier Systems (eBook, PDF)40,95 €
- Transactions on Rough Sets V (eBook, PDF)40,95 €
- Multiple Classifier Systems (eBook, PDF)40,95 €
- Rough Sets and Knowledge Technology (eBook, PDF)73,95 €
- Transactions on Rough Sets VIII (eBook, PDF)73,95 €
- Transactions on Rough Sets III (eBook, PDF)40,95 €
- Multiple Classifier Systems (eBook, PDF)40,95 €
-
-
-
This book constitutes the thoroughly refereed joint post-proceedings of three consecutive International Workshops on Learning Classifier Systems that took place in Chicago, IL in July 2003, in Seattle, WA in June 2004, and in Washington, DC in June 2005. Topics in the 22 revised full papers range from theoretical analysis of mechanisms to practical consideration for successful application of such techniques to everyday datamining tasks.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 345
- Erscheinungstermin: 11. Juni 2007
- Englisch
- ISBN-13: 9783540712312
- Artikelnr.: 44227830
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 345
- Erscheinungstermin: 11. Juni 2007
- Englisch
- ISBN-13: 9783540712312
- Artikelnr.: 44227830
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Tim Kovacs, University of Bristol, UK / Xavier Llorà, University of Illinois at Urbana-Champaign, IL, USA / Keiki Takadama, Tokyo Institute of Technology, Japan / Pier Luca Lanzi, Politecnico di Milano, Italy / Wolfgang Stolzmann, Daimler Chrysler AG, Sindelfingen, Germany / Stewart W. Wilson, Prediction Dynamics, Concord, MA, USA
Knowledge Representation.- Analyzing Parameter Sensitivity and Classifier Representations for Real-Valued XCS.- Use of Learning Classifier System for Inferring Natural Language Grammar.- Backpropagation in Accuracy-Based Neural Learning Classifier Systems.- Binary Rule Encoding Schemes: A Study Using the Compact Classifier System.- Mechanisms.- Bloat Control and Generalization Pressure Using the Minimum Description Length Principle for a Pittsburgh Approach Learning Classifier System.- Post-processing Clustering to Decrease Variability in XCS Induced Rulesets.- LCSE: Learning Classifier System Ensemble for Incremental Medical Instances.- Effect of Pure Error-Based Fitness in XCS.- A Fuzzy System to Control Exploration Rate in XCS.- Counter Example for Q-Bucket-Brigade Under Prediction Problem.- An Experimental Comparison Between ATNoSFERES and ACS.- The Class Imbalance Problem in UCS Classifier System: A Preliminary Study.- Three Methods for Covering Missing Input Data in XCS.- New Directions.- A Hyper-Heuristic Framework with XCS: Learning to Create Novel Problem-Solving Algorithms Constructed from Simpler Algorithmic Ingredients.- Adaptive Value Function Approximations in Classifier Systems.- Three Architectures for Continuous Action.- A Formal Relationship Between Ant Colony Optimizers and Classifier Systems.- Detection of Sentinel Predictor-Class Associations with XCS: A Sensitivity Analysis.- Application-Oriented Research and Tools.- Data Mining in Learning Classifier Systems: Comparing XCS with GAssist.- Improving the Performance of a Pittsburgh Learning Classifier System Using a Default Rule.- Using XCS to Describe Continuous-Valued Problem Spaces.- The EpiXCS Workbench: A Tool for Experimentation and Visualization.
Knowledge Representation.- Analyzing Parameter Sensitivity and Classifier Representations for Real-Valued XCS.- Use of Learning Classifier System for Inferring Natural Language Grammar.- Backpropagation in Accuracy-Based Neural Learning Classifier Systems.- Binary Rule Encoding Schemes: A Study Using the Compact Classifier System.- Mechanisms.- Bloat Control and Generalization Pressure Using the Minimum Description Length Principle for a Pittsburgh Approach Learning Classifier System.- Post-processing Clustering to Decrease Variability in XCS Induced Rulesets.- LCSE: Learning Classifier System Ensemble for Incremental Medical Instances.- Effect of Pure Error-Based Fitness in XCS.- A Fuzzy System to Control Exploration Rate in XCS.- Counter Example for Q-Bucket-Brigade Under Prediction Problem.- An Experimental Comparison Between ATNoSFERES and ACS.- The Class Imbalance Problem in UCS Classifier System: A Preliminary Study.- Three Methods for Covering Missing Input Data in XCS.- New Directions.- A Hyper-Heuristic Framework with XCS: Learning to Create Novel Problem-Solving Algorithms Constructed from Simpler Algorithmic Ingredients.- Adaptive Value Function Approximations in Classifier Systems.- Three Architectures for Continuous Action.- A Formal Relationship Between Ant Colony Optimizers and Classifier Systems.- Detection of Sentinel Predictor-Class Associations with XCS: A Sensitivity Analysis.- Application-Oriented Research and Tools.- Data Mining in Learning Classifier Systems: Comparing XCS with GAssist.- Improving the Performance of a Pittsburgh Learning Classifier System Using a Default Rule.- Using XCS to Describe Continuous-Valued Problem Spaces.- The EpiXCS Workbench: A Tool for Experimentation and Visualization.