40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
40,95 €
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
20 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 40.78MB
Produktdetails
- Verlag: Birkhäuser Basel
- Seitenzahl: 304
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783034874663
- Artikelnr.: 53163951
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
I: Subnormal operators.- 1. Elementary properties and examples.- 2. Characterization of subnormality.- 3. The minimal normal extension.- 4. Putnam's inequality.- 5. Supplement: Positive definite kernels.- Notes.- Exercises.- II: Hyponormal operators and related objects.- 1. Pure hyponormal operators.- 2. Examples of hyponormal operators.- 3. Contractions associated to hyponormal operators.- 4. Unitary invariants.- Notes.- Exercises.- III: Spectrum, resolvent and analytic functional calculus.- 1. The spectrum.- 2. Estimates of the resolvent function.- 3. A sharpened analytic functional calculus.- 4. Generalized scalar extensions.- 5. Local spectral properties.- 6. Supplement: Pseudo-analytic extensions of smooth functions.- Notes.- Exercises.- IV: Some invariant subspaces for hyponormal operators.- 1. Preliminaries.- 2. Scott Brown's theorem.- 3. Hyperinvariant subspaces for subnormal operators.- 4. The lattice of invariant subspaces.- Notes.- Exercises.- V: Operations with hyponormal operators.- 1. Operations.- 2. Spectral mapping results.- Notes.- Exercises.- VI: The basic inequalities.- 1. Berger and Shaw's inequality.- 2. Putnam's inequality.- 3. Commutators and absolute continuity of self-adjoint operators.- 4. Kato's inequality.- 5. Supplement: The structure of absolutely continuous self-adjoint operators.- Notes.- Exercises.- VII: Functional models.- 1. The Hilbert transform of vector valued functions.- 2. The singular integral model.- 3. The two-dimensional singular integral model.- 4. The Toeplitz model.- 5. Supplement: One dimensional singular integral operators.- Notes.- Exercises.- VIII: Methods of perturbation theory.- 1. The phase shift.- 2. Abstract symbol and Friedrichs operations.- 3. The Birman - Kato - Rosenblum scattering theory.- 4.Boundary behaviour of compressed resolvents.- 5. Supplement: Integral representations for a class of analytic functions defined in the upper half-plane.- Notes.- Exercises.- IX: Mosaics.- 1. The phase operator.- 2. Determining functions.- 3. The principal function.- 4. Symbol homomorphisms and mosaics.- 5. Properties of the mosaic.- 6. Supplement: A spectral mapping theorem for the numerical range.- Notes.- Exercises.- X: The principal function.- 1. Bilinear forms with the collapsing property.- 2. Smooth functional calculus modulo trace-class operators and the trace formula.- 3. The properties of the principal function.- 4. Berger's estimates.- Notes.- Exercises.- XI: Operators with one dimensional self-commutator.- 1. The global local resolvent.- 2. The kernel function.- 3. A functional model.- 4. The spectrum and the principal function.- Notes.- Exercises.- XII: Applications.- 1. Pairs of unbounded self-adjoint operators.- 2. The Szego limit theorem.- 3. A two dimensional moment problem.- Notes.- Exercises.- References.- Notation and symbols.
I: Subnormal operators.- 1. Elementary properties and examples.- 2. Characterization of subnormality.- 3. The minimal normal extension.- 4. Putnam's inequality.- 5. Supplement: Positive definite kernels.- Notes.- Exercises.- II: Hyponormal operators and related objects.- 1. Pure hyponormal operators.- 2. Examples of hyponormal operators.- 3. Contractions associated to hyponormal operators.- 4. Unitary invariants.- Notes.- Exercises.- III: Spectrum, resolvent and analytic functional calculus.- 1. The spectrum.- 2. Estimates of the resolvent function.- 3. A sharpened analytic functional calculus.- 4. Generalized scalar extensions.- 5. Local spectral properties.- 6. Supplement: Pseudo-analytic extensions of smooth functions.- Notes.- Exercises.- IV: Some invariant subspaces for hyponormal operators.- 1. Preliminaries.- 2. Scott Brown's theorem.- 3. Hyperinvariant subspaces for subnormal operators.- 4. The lattice of invariant subspaces.- Notes.- Exercises.- V: Operations with hyponormal operators.- 1. Operations.- 2. Spectral mapping results.- Notes.- Exercises.- VI: The basic inequalities.- 1. Berger and Shaw's inequality.- 2. Putnam's inequality.- 3. Commutators and absolute continuity of self-adjoint operators.- 4. Kato's inequality.- 5. Supplement: The structure of absolutely continuous self-adjoint operators.- Notes.- Exercises.- VII: Functional models.- 1. The Hilbert transform of vector valued functions.- 2. The singular integral model.- 3. The two-dimensional singular integral model.- 4. The Toeplitz model.- 5. Supplement: One dimensional singular integral operators.- Notes.- Exercises.- VIII: Methods of perturbation theory.- 1. The phase shift.- 2. Abstract symbol and Friedrichs operations.- 3. The Birman - Kato - Rosenblum scattering theory.- 4.Boundary behaviour of compressed resolvents.- 5. Supplement: Integral representations for a class of analytic functions defined in the upper half-plane.- Notes.- Exercises.- IX: Mosaics.- 1. The phase operator.- 2. Determining functions.- 3. The principal function.- 4. Symbol homomorphisms and mosaics.- 5. Properties of the mosaic.- 6. Supplement: A spectral mapping theorem for the numerical range.- Notes.- Exercises.- X: The principal function.- 1. Bilinear forms with the collapsing property.- 2. Smooth functional calculus modulo trace-class operators and the trace formula.- 3. The properties of the principal function.- 4. Berger's estimates.- Notes.- Exercises.- XI: Operators with one dimensional self-commutator.- 1. The global local resolvent.- 2. The kernel function.- 3. A functional model.- 4. The spectrum and the principal function.- Notes.- Exercises.- XII: Applications.- 1. Pairs of unbounded self-adjoint operators.- 2. The Szego limit theorem.- 3. A two dimensional moment problem.- Notes.- Exercises.- References.- Notation and symbols.