42,95 €
42,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
21 °P sammeln
42,95 €
42,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
21 °P sammeln
Als Download kaufen
42,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
21 °P sammeln
Jetzt verschenken
42,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
21 °P sammeln
  • Format: ePub

K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi-Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 10.92MB
Produktbeschreibung
K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi-Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin-Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Daniel Huybrechts is a professor at the Mathematical Institute of the University of Bonn. He previously held positions at the Université Denis Diderot Paris 7 and the University of Cologne. He is interested in algebraic geometry, particularly special geometries with rich algebraic, analytic, and arithmetic structures. His current work focuses on K3 surfaces and higher dimensional analogues. He has published four books.