Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Herstellerkennzeichnung
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
0 Introduction.- 1 The Poisson bivector and the Schouten-Nijenhuis bracket.- 1.1 The Poisson bivector.- 1.2 The Schouten-Nijenhuis bracket.- 1.3 Coordinate expressions.- 1.4 The Koszul formula and applications.- 1.5 Miscellanea.- 2 The symplectic foliation of a Poisson manifold.- 2.1 General distributions and foliations.- 2.2 Involutivity and integrability.- 2.3 The case of Poisson manifolds.- 3 Examples of Poisson manifolds.- 3.1 Structures on ?n. Lie-Poisson structures.- 3.2 Dirac brackets.- 3.3 Further examples.- 4 Poisson calculus.- 4.1 The bracket of 1-forms.- 4.2 The contravariant exterior differentiations.- 4.3 The regular case.- 4.4 Cofoliations.- 4.5 Contravariant derivatives on vector bundles.- 4.6 More brackets.- 5 Poisson cohomology.- 5.1 Definition and general properties.- 5.2 Straightforward and inductive computations.- 5.3 The spectral sequence of Poisson cohomology.- 5.4 Poisson homology.- 6 An introduction to quantization.- 6.1 Prequantization.- 6.2 Quantization.- 6.3 Prequantization representations.- 6.4 Deformation quantization.- 7 Poisson morphisms, coinduced structures, reduction.- 7.1 Properties of Poisson mappings.- 7.2 Reduction of Poisson structures.- 7.3 Group actions and momenta.- 7.4 Group actions and reduction.- 8 Symplectic realizations of Poisson manifolds.- 8.1 Local symplectic realizations.- 8.2 Dual pairs of Poisson manifolds.- 8.3 Isotropic realizations.- 8.4 Isotropic realizations and nets.- 9 Realizations of Poisson manifolds by symplectic groupoids.- 9.1 Realizations of Lie-Poisson structures.- 9.2 The Lie groupoid and symplectic structures of T*G.- 9.3 General symplectic groupoids.- 9.4 Lie algebroids and the integrability of Poisson manifolds.- 9.5 Further integrability results.- 10 Poisson-Lie groups.- 10.1 Poisson-Lie andbiinvariant structures on Lie groups.- 10.2 Characteristic properties of Poisson-Lie groups.- 10.3 The Lie algebra of a Poisson-Lie group.- 10.4 The Yang-Baxter equations.- 10.5 Manin triples.- 10.6 Actions and dressing transformations.- References.
0 Introduction.- 1 The Poisson bivector and the Schouten-Nijenhuis bracket.- 1.1 The Poisson bivector.- 1.2 The Schouten-Nijenhuis bracket.- 1.3 Coordinate expressions.- 1.4 The Koszul formula and applications.- 1.5 Miscellanea.- 2 The symplectic foliation of a Poisson manifold.- 2.1 General distributions and foliations.- 2.2 Involutivity and integrability.- 2.3 The case of Poisson manifolds.- 3 Examples of Poisson manifolds.- 3.1 Structures on ?n. Lie-Poisson structures.- 3.2 Dirac brackets.- 3.3 Further examples.- 4 Poisson calculus.- 4.1 The bracket of 1-forms.- 4.2 The contravariant exterior differentiations.- 4.3 The regular case.- 4.4 Cofoliations.- 4.5 Contravariant derivatives on vector bundles.- 4.6 More brackets.- 5 Poisson cohomology.- 5.1 Definition and general properties.- 5.2 Straightforward and inductive computations.- 5.3 The spectral sequence of Poisson cohomology.- 5.4 Poisson homology.- 6 An introduction to quantization.- 6.1 Prequantization.- 6.2 Quantization.- 6.3 Prequantization representations.- 6.4 Deformation quantization.- 7 Poisson morphisms, coinduced structures, reduction.- 7.1 Properties of Poisson mappings.- 7.2 Reduction of Poisson structures.- 7.3 Group actions and momenta.- 7.4 Group actions and reduction.- 8 Symplectic realizations of Poisson manifolds.- 8.1 Local symplectic realizations.- 8.2 Dual pairs of Poisson manifolds.- 8.3 Isotropic realizations.- 8.4 Isotropic realizations and nets.- 9 Realizations of Poisson manifolds by symplectic groupoids.- 9.1 Realizations of Lie-Poisson structures.- 9.2 The Lie groupoid and symplectic structures of T*G.- 9.3 General symplectic groupoids.- 9.4 Lie algebroids and the integrability of Poisson manifolds.- 9.5 Further integrability results.- 10 Poisson-Lie groups.- 10.1 Poisson-Lie andbiinvariant structures on Lie groups.- 10.2 Characteristic properties of Poisson-Lie groups.- 10.3 The Lie algebra of a Poisson-Lie group.- 10.4 The Yang-Baxter equations.- 10.5 Manin triples.- 10.6 Actions and dressing transformations.- References.
Rezensionen
"The book serves well as an introduction and an overview of the subject and a long list of references helps with further study." -- Zbl. Math. "The book is well done...should be an essential purchase for mathematics libraries and is likely to be a standard reference for years to come, providing an introduction to an attractive area of further research." -- Mathematical Reviews "The importance and actuality of the subject, as well as the very rigorous and didactic presentation of the content, make out of this book a valuable contribution to current mathematics. The book is intended first of all to mathematicians, but it can be interesting also for a wide circle of readers, including mechanicists and physicists." -- Mathematica
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826