105,95 €
105,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
53 °P sammeln
105,95 €
105,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
53 °P sammeln
Als Download kaufen
105,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
53 °P sammeln
Jetzt verschenken
105,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
53 °P sammeln
  • Format: PDF

This text presents a wide-ranging and rigorous overview of nearest neighbor methods, one of the most important paradigms in machine learning. Now in one self-contained volume, this book systematically covers key statistical, probabilistic, combinatorial and geometric ideas for understanding, analyzing and developing nearest neighbor methods.
Gérard Biau is a professor at Université Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal).

Produktbeschreibung
This text presents a wide-ranging and rigorous overview of nearest neighbor methods, one of the most important paradigms in machine learning. Now in one self-contained volume, this book systematically covers key statistical, probabilistic, combinatorial and geometric ideas for understanding, analyzing and developing nearest neighbor methods.

Gérard Biau is a professor at Université Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal).


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
    
Rezensionen
"This book deals with different aspects regarding this approach, starting with the standard k-nearest neighbor model, and passing through the weighted k-nearest neighbor model, estimations for entropy, regression functions etc. ... It is intended for a large audience, including students, teachers, and researchers." (Florin Gorunescu, zbMATH 1330.68001, 2016)