Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Herstellerkennzeichnung
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
Representations of rank one lie algebras of characteristic p.- The classification problem for simple lie algebras of characteristic p.- Normalizer towers in semisimple Lie algebras.- A classification of pointed An-modules.- Representations of affine lie algebras, hecke modular forms and korteweg-De vries type equations.- A note on the centers of lie algebras of classical type.- Some problems on infinite dimensional lie algebras and their representations.- Some simple Lie algebras of characteristic 2.- Affine Lie algebras and combinatorial identities.- An embedding of PSL(2,13) in ? 0.- Affine lie algebras and theta-functions.- Resolutions of irreducible highest weight modules over infinite dimensional graded lie algebras.- Representations of lie p-algebras.- Noncocommutative sequences of divided powers.- Eclidean lie algebras are universal central extensions.- The fitting and jordan structure of affine semigroups.
Representations of rank one lie algebras of characteristic p.- The classification problem for simple lie algebras of characteristic p.- Normalizer towers in semisimple Lie algebras.- A classification of pointed An-modules.- Representations of affine lie algebras, hecke modular forms and korteweg-De vries type equations.- A note on the centers of lie algebras of classical type.- Some problems on infinite dimensional lie algebras and their representations.- Some simple Lie algebras of characteristic 2.- Affine Lie algebras and combinatorial identities.- An embedding of PSL(2,13) in ? 0.- Affine lie algebras and theta-functions.- Resolutions of irreducible highest weight modules over infinite dimensional graded lie algebras.- Representations of lie p-algebras.- Noncocommutative sequences of divided powers.- Eclidean lie algebras are universal central extensions.- The fitting and jordan structure of affine semigroups.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826