Studienarbeit aus dem Jahr 2017 im Fachbereich Mathematik - Statistik, Note: 2,00, Ludwig-Maximilians-Universität München (Institut für Statistik), Veranstaltung: Fortgeschrittene Themen der Entscheidungstheorie, Sprache: Deutsch, Abstract: Die vorliegende Arbeit wird zunächst die Grundlagen der Entscheidungstheorie skizzieren, zwei bekannte Verfahren - das Minimax-Prinzip und das Bayes-Prinzip - vorstellen und anhand eines praktischen Beispiels aus der Vorlesung die Vorgehensweise veranschaulichen. Der Fokus liegt allerdings auf einem der Likelihood-Funktion zugrunde liegenden Entscheidungsverfahren: Im Hauptteil werden zunächst die der Likelihood zu Grunde liegende Idee und die Annahmen sowie Eigenschaften der Likelihood-Funktion erläutert und danach Entscheidungsverfahren und ihre Umsetzung eingeführt, die auf ihr basieren.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.