A. D. Wentzell
Limit Theorems on Large Deviations for Markov Stochastic Processes (eBook, PDF)
40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
40,95 €
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
20 °P sammeln
A. D. Wentzell
Limit Theorems on Large Deviations for Markov Stochastic Processes (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Zur Zeit liegt uns keine Inhaltsangabe vor.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 12.39MB
Zur Zeit liegt uns keine Inhaltsangabe vor.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Netherlands
- Seitenzahl: 176
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9789400918528
- Artikelnr.: 44180700
- Verlag: Springer Netherlands
- Seitenzahl: 176
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9789400918528
- Artikelnr.: 44180700
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
0.1 Problems on large deviations for stochastic processes.- 0.2 Two opposite types of behaviour of probabilities of large deviations.- 0.3 Rough theorems on large deviations; the action functional.- 0.4 Survey of work on large deviations for stochastic processes.- 0.5 The scheme for obtaining rough theorems on large deviations.- 0.6 The expression: k (?) S (?) is the action functional uniformly over a specified class of initial points.- 0.7 Chapters 3 - 6: a survey.- 0.8 Numbering.- 1. General Notions, Notation, Auxiliary Results.- 1.1. General notation. Legendre transformation.- 1.2. Compensators. Lévy measures.- 1.3. Compensating operators of Markov processes.- 2. Estimates Associated with the Action Functional for Markov Processes.- 2.1. The action functional.- 2.2. Derivation of the lower estimate for the probability of passing through a tube.- 2.3. Derivation of the upper estimate for the probability of going far from the sets$$ {{Phi }_{{{{x}_{0}};left[ {0,T} right]}}}left( i right),{{bar{Phi }}_{{{{x}_{0}};left[ {0,T} right]}}}left( i right) $$.- 2.4. The truncated action functional and the estimates associated with it.- 3. The Action Functional for Families of Markov Processes.- 3.1. The properties of the functional$$ {{S}_{{{{T}_{1}},{{T}_{2}}}}}left( phi right) $$.- 3.2. Theorems on the action functional for families of Markov processes in Rr. The case of finite exponential moments.- 3.3. Transition to manifolds. Action functional theorems associated with truncated cumulants.- 4. Special Cases.- 4.1. Conditions A - E of 3.1. - 3.3.- 4.2. Patterns of processes with frequent small jumps. The cases of very large deviations, not very large deviations, and super-large deviations.- 4.3. The case of very large deviations.- 4.4. Thecase of not very large deviations.- 4.5. Some other patterns of not very large deviations.- 4.6. The case of super-large deviations.- 5. Precise Asymptotics for Large Deviations.- 5.1. The case of the Wiener process.- 5.2. Processes with frequent small jumps.- 6. Asymptotics of the Probability of Large Deviations Due to Large Jumps of a Markov Process.- 6.1. Conditions imposed on the family of processes. Auxiliary results.- 6.2. Main theorems.- 6.3. Applications to sums of independent random variables.- References.
0.1 Problems on large deviations for stochastic processes.- 0.2 Two opposite types of behaviour of probabilities of large deviations.- 0.3 Rough theorems on large deviations; the action functional.- 0.4 Survey of work on large deviations for stochastic processes.- 0.5 The scheme for obtaining rough theorems on large deviations.- 0.6 The expression: k (?) S (?) is the action functional uniformly over a specified class of initial points.- 0.7 Chapters 3 - 6: a survey.- 0.8 Numbering.- 1. General Notions, Notation, Auxiliary Results.- 1.1. General notation. Legendre transformation.- 1.2. Compensators. Lévy measures.- 1.3. Compensating operators of Markov processes.- 2. Estimates Associated with the Action Functional for Markov Processes.- 2.1. The action functional.- 2.2. Derivation of the lower estimate for the probability of passing through a tube.- 2.3. Derivation of the upper estimate for the probability of going far from the sets$$ {{Phi }_{{{{x}_{0}};left[ {0,T} right]}}}left( i right),{{bar{Phi }}_{{{{x}_{0}};left[ {0,T} right]}}}left( i right) $$.- 2.4. The truncated action functional and the estimates associated with it.- 3. The Action Functional for Families of Markov Processes.- 3.1. The properties of the functional$$ {{S}_{{{{T}_{1}},{{T}_{2}}}}}left( phi right) $$.- 3.2. Theorems on the action functional for families of Markov processes in Rr. The case of finite exponential moments.- 3.3. Transition to manifolds. Action functional theorems associated with truncated cumulants.- 4. Special Cases.- 4.1. Conditions A - E of 3.1. - 3.3.- 4.2. Patterns of processes with frequent small jumps. The cases of very large deviations, not very large deviations, and super-large deviations.- 4.3. The case of very large deviations.- 4.4. Thecase of not very large deviations.- 4.5. Some other patterns of not very large deviations.- 4.6. The case of super-large deviations.- 5. Precise Asymptotics for Large Deviations.- 5.1. The case of the Wiener process.- 5.2. Processes with frequent small jumps.- 6. Asymptotics of the Probability of Large Deviations Due to Large Jumps of a Markov Process.- 6.1. Conditions imposed on the family of processes. Auxiliary results.- 6.2. Main theorems.- 6.3. Applications to sums of independent random variables.- References.