Ruriko Yoshida
Linear Algebra and Its Applications with R (eBook, PDF)
59,95 €
59,95 €
inkl. MwSt.
Sofort per Download lieferbar
30 °P sammeln
59,95 €
Als Download kaufen
59,95 €
inkl. MwSt.
Sofort per Download lieferbar
30 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
59,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
30 °P sammeln
Ruriko Yoshida
Linear Algebra and Its Applications with R (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The book developed from the need to teach a linear algebra course to students focused on data science and bioinformatics programs. This textbook provides students a theoretical basis which can then be applied to the practical R and Python problems, providing the tools needed for real-world applications.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
Andere Kunden interessierten sich auch für
- Robert E. WhiteComputational Linear Algebra (eBook, PDF)48,95 €
- Mark J. DebonisIntroduction To Linear Algebra (eBook, PDF)48,95 €
- J. Vasundhara DeviLinear Algebra to Differential Equations (eBook, PDF)125,95 €
- James R. KirkwoodA Bridge to Higher Mathematics (eBook, PDF)43,95 €
- Mary Jane SterlingLinear Algebra For Dummies (eBook, PDF)16,99 €
- -13%11Thomas MichaelsPrüfungstraining Lineare Algebra (eBook, PDF)32,99 €
- Enrique CastilloOrthogonal Sets and Polar Methods in Linear Algebra (eBook, PDF)188,99 €
-
-
- -21%11
The book developed from the need to teach a linear algebra course to students focused on data science and bioinformatics programs. This textbook provides students a theoretical basis which can then be applied to the practical R and Python problems, providing the tools needed for real-world applications.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 424
- Erscheinungstermin: 27. Juni 2021
- Englisch
- ISBN-13: 9781000400243
- Artikelnr.: 62087561
- Verlag: Taylor & Francis
- Seitenzahl: 424
- Erscheinungstermin: 27. Juni 2021
- Englisch
- ISBN-13: 9781000400243
- Artikelnr.: 62087561
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Dr. Ruriko Yoshida is an Associate Professor of Operations Research at the Naval Postgraduate School. She received her Ph.D. in Mathematics from the University of California, Davis. Her research topics cover a wide variety of areas: applications of algebraic combinatorics to statistical problems such as statistical learning on non-Euclidean spaces, sensor networks, phylogenetics, and phylogenomics. She teaches courses in statistics, stochastic models, probability, and data science.
Preface. 1. Systems of Linear Equations and Matrices. 1.1. Introductory
Example from Statistics. 1.2. What is a Matrix? What is a Vector? 1.3.
Systems of Linear Equations. 1.4. Echelon Form. 2. Matrix Arithmetic. 2.1.
Introductory Example from Statistics. 2.2. Matrix Operations. 2.3.
Properties of Matrix Operations and Matrix Inverse. 2.4. Elementary
Matrices. 2.5. Discussion. 3. Determinants. 3.1. Introductory Example from
Astronomy. 3.2. Determinants. 3.3. Introduction of Determinants. 3.4.
Properties of Determinants. 3.5. Cramer's Rule. 3.6. Discussion. 4. Vector
Spaces. 4.1. Introductory Example from Data Science. 4.2. Vector Spaces and
Subspaces. 4.3. Null Space, Column Space, and Row Space. 4.4. Spanning Sets
and Bases. 4.5. Coordinates Systems and Change of Basis. 4.6. Discussion.
5. Inner Product Space. 5.1. Introductory Example from Statistics. 5.2.
Inner Products. 5.3. Angles and Orthogonality. 5.4. Discussion. 6. Eigen
Values and Eigen Vectors. 6.1. Introductory Example from Data Science:
Image Compression. 6.2. Eigen Values and Eigen Vectors. 6.3.
Diagonalization. 6.4. Discussion. 7. Linear Regression. 7.1. Introductory
Example from Statistics. 7.2. Simple Linear Regression. 7.2. Simple Linear
Regression. 8. Linear Programming. 8.1. Introductory Example from
Optimization. 8.2. Linear Programming. 9. Network Analysis. 9.1.
Introductory Example from Network Analysis. 9.1. Introductory Example from
Network Analysis. 9.2. Graphs and Networks. 9.3. Discussion. Appendices.
A) Introduction to RStudio via Amazon Web Service (AWS). B) B Introduction
to R. Bibliography. Index.
Example from Statistics. 1.2. What is a Matrix? What is a Vector? 1.3.
Systems of Linear Equations. 1.4. Echelon Form. 2. Matrix Arithmetic. 2.1.
Introductory Example from Statistics. 2.2. Matrix Operations. 2.3.
Properties of Matrix Operations and Matrix Inverse. 2.4. Elementary
Matrices. 2.5. Discussion. 3. Determinants. 3.1. Introductory Example from
Astronomy. 3.2. Determinants. 3.3. Introduction of Determinants. 3.4.
Properties of Determinants. 3.5. Cramer's Rule. 3.6. Discussion. 4. Vector
Spaces. 4.1. Introductory Example from Data Science. 4.2. Vector Spaces and
Subspaces. 4.3. Null Space, Column Space, and Row Space. 4.4. Spanning Sets
and Bases. 4.5. Coordinates Systems and Change of Basis. 4.6. Discussion.
5. Inner Product Space. 5.1. Introductory Example from Statistics. 5.2.
Inner Products. 5.3. Angles and Orthogonality. 5.4. Discussion. 6. Eigen
Values and Eigen Vectors. 6.1. Introductory Example from Data Science:
Image Compression. 6.2. Eigen Values and Eigen Vectors. 6.3.
Diagonalization. 6.4. Discussion. 7. Linear Regression. 7.1. Introductory
Example from Statistics. 7.2. Simple Linear Regression. 7.2. Simple Linear
Regression. 8. Linear Programming. 8.1. Introductory Example from
Optimization. 8.2. Linear Programming. 9. Network Analysis. 9.1.
Introductory Example from Network Analysis. 9.1. Introductory Example from
Network Analysis. 9.2. Graphs and Networks. 9.3. Discussion. Appendices.
A) Introduction to RStudio via Amazon Web Service (AWS). B) B Introduction
to R. Bibliography. Index.
Preface. 1. Systems of Linear Equations and Matrices. 1.1. Introductory
Example from Statistics. 1.2. What is a Matrix? What is a Vector? 1.3.
Systems of Linear Equations. 1.4. Echelon Form. 2. Matrix Arithmetic. 2.1.
Introductory Example from Statistics. 2.2. Matrix Operations. 2.3.
Properties of Matrix Operations and Matrix Inverse. 2.4. Elementary
Matrices. 2.5. Discussion. 3. Determinants. 3.1. Introductory Example from
Astronomy. 3.2. Determinants. 3.3. Introduction of Determinants. 3.4.
Properties of Determinants. 3.5. Cramer's Rule. 3.6. Discussion. 4. Vector
Spaces. 4.1. Introductory Example from Data Science. 4.2. Vector Spaces and
Subspaces. 4.3. Null Space, Column Space, and Row Space. 4.4. Spanning Sets
and Bases. 4.5. Coordinates Systems and Change of Basis. 4.6. Discussion.
5. Inner Product Space. 5.1. Introductory Example from Statistics. 5.2.
Inner Products. 5.3. Angles and Orthogonality. 5.4. Discussion. 6. Eigen
Values and Eigen Vectors. 6.1. Introductory Example from Data Science:
Image Compression. 6.2. Eigen Values and Eigen Vectors. 6.3.
Diagonalization. 6.4. Discussion. 7. Linear Regression. 7.1. Introductory
Example from Statistics. 7.2. Simple Linear Regression. 7.2. Simple Linear
Regression. 8. Linear Programming. 8.1. Introductory Example from
Optimization. 8.2. Linear Programming. 9. Network Analysis. 9.1.
Introductory Example from Network Analysis. 9.1. Introductory Example from
Network Analysis. 9.2. Graphs and Networks. 9.3. Discussion. Appendices.
A) Introduction to RStudio via Amazon Web Service (AWS). B) B Introduction
to R. Bibliography. Index.
Example from Statistics. 1.2. What is a Matrix? What is a Vector? 1.3.
Systems of Linear Equations. 1.4. Echelon Form. 2. Matrix Arithmetic. 2.1.
Introductory Example from Statistics. 2.2. Matrix Operations. 2.3.
Properties of Matrix Operations and Matrix Inverse. 2.4. Elementary
Matrices. 2.5. Discussion. 3. Determinants. 3.1. Introductory Example from
Astronomy. 3.2. Determinants. 3.3. Introduction of Determinants. 3.4.
Properties of Determinants. 3.5. Cramer's Rule. 3.6. Discussion. 4. Vector
Spaces. 4.1. Introductory Example from Data Science. 4.2. Vector Spaces and
Subspaces. 4.3. Null Space, Column Space, and Row Space. 4.4. Spanning Sets
and Bases. 4.5. Coordinates Systems and Change of Basis. 4.6. Discussion.
5. Inner Product Space. 5.1. Introductory Example from Statistics. 5.2.
Inner Products. 5.3. Angles and Orthogonality. 5.4. Discussion. 6. Eigen
Values and Eigen Vectors. 6.1. Introductory Example from Data Science:
Image Compression. 6.2. Eigen Values and Eigen Vectors. 6.3.
Diagonalization. 6.4. Discussion. 7. Linear Regression. 7.1. Introductory
Example from Statistics. 7.2. Simple Linear Regression. 7.2. Simple Linear
Regression. 8. Linear Programming. 8.1. Introductory Example from
Optimization. 8.2. Linear Programming. 9. Network Analysis. 9.1.
Introductory Example from Network Analysis. 9.1. Introductory Example from
Network Analysis. 9.2. Graphs and Networks. 9.3. Discussion. Appendices.
A) Introduction to RStudio via Amazon Web Service (AWS). B) B Introduction
to R. Bibliography. Index.