69,95 €
69,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
35 °P sammeln
69,95 €
69,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
35 °P sammeln
Als Download kaufen
69,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
35 °P sammeln
Jetzt verschenken
69,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
35 °P sammeln
  • Format: PDF

This new edition covers the central concepts of practical optimization techniques, with an emphasis on methods that are both state-of-the-art and popular. Again a connection between the purely analytical character of an optimization problem and the behavior of algorithms used to solve the problem. As in the earlier editions, the material in this fourth edition is organized into three separate parts. Part I is a self-contained introduction to linear programming covering numerical algorithms and many of its important special applications. Part II, which is independent of Part I, covers the…mehr

Produktbeschreibung
This new edition covers the central concepts of practical optimization techniques, with an emphasis on methods that are both state-of-the-art and popular. Again a connection between the purely analytical character of an optimization problem and the behavior of algorithms used to solve the problem. As in the earlier editions, the material in this fourth edition is organized into three separate parts. Part I is a self-contained introduction to linear programming covering numerical algorithms and many of its important special applications. Part II, which is independent of Part I, covers the theory of unconstrained optimization, including both derivations of the appropriate optimality conditions and an introduction to basic algorithms. Part III extends the concepts developed in the second part to constrained optimization problems. It is possible to go directly into Parts II and III omitting Part I, and, in fact, the book has been used in this way in many universities.


From the reviews of the Third Edition

"....this very well-written book is a classic textbook in Optimization. It should be present in the bookcase of each student, researcher, and specialist from the host of disciplines from which practical optimization applications are drawn." (Jean-Jacques Strodiot, Zentralblatt MATH, Vol.1207, 2011).


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
David G. Luenberger received the B.S. degree from the California Institute of Technology and the M.S. and Ph.D. degrees from Stanford University, all in Electrical Engineering. Since 1963 he has been on the faculty of Stanford University. He helped found the Department of Engineering-Economic Systems, now merged to become the Department of Management Science and Engineering, where his is currently a professor.

He served as Technical Assistant to the President's Science Advisor in 1971-72, was Guest Professor at the Technical University of Denmark (1986), Visiting Professor of the Massachusetts Institute of Technology (1976), and served as Department Chairman at Stanford (1980-1991).

His awards include: Member of the National Academy of Engineering (2008), the Bode Lecture Prize of the Control Systems Society (1990), the Oldenburger Medal of the American Society of Mechanical Engineers (1995), and the Expository Writing Award of the Institute of Operations Research and Management Science (1999). He is a Fellow of the Institute of Electrical and Electronic Engineers (since 1975).

Yinyu Ye is currently the Kwoh-Ting Li Professor in the School of Engineering at the Department of Management Science and Engineering and Institute of Computational and Mathematical Engineering and the Director of the MS&E Industrial Affiliates Program, Stanford University. He received the B.S. degree in System Engineering from the Huazhong University of Science and Technology, China, and the M.S. and Ph.D. degrees in Engineering-Economic Systems and Operations Research from Stanford University.

Ye's research interests lie in the areas of optimization, complexity theory, algorithm design and analysis, and applications of mathematical programming, operations research and system engineering. He is also interested in developing optimization software for various real-world applications. Current research topics include Liner Programming Algorithms, Markov Decision Processes, Computational Game/Market Equilibrium, Metric Distance Geometry, Dynamic Resource Allocation, and Stochastic and Robust Decision Making, etc. He is an INFORMS (The Institute for Operations Research and The Management Science) Fellow, and has received several research awards including the inaugural 2012 ISMP Tseng Lectureship Prize for outstanding contribution to continuous optimization, the 2009 John von Neumann Theory Prize for fundamental sustained contributions to theory in Operations Research and the Management Sciences, the inaugural 2006 Farkas prize on Optimization, and the 2009 IBM Faculty Award.