76,95 €
76,95 €
inkl. MwSt.
Sofort per Download lieferbar
38 °P sammeln
76,95 €
Als Download kaufen
76,95 €
inkl. MwSt.
Sofort per Download lieferbar
38 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
76,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
38 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book includes chapters on specifying the correct linear regression model, adjusting for measurement error, understanding the effects of influential observations, and using multilevel data.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
Andere Kunden interessierten sich auch für
- John P. HoffmannLinear Regression Models (eBook, ePUB)76,95 €
- Julian J. FarawayLinear Models with Python (eBook, PDF)94,95 €
- Lukas MeierANOVA and Mixed Models (eBook, PDF)57,95 €
- Yan LuR Companion for Sampling (eBook, PDF)31,95 €
- Keith McNultyHandbook of Regression Modeling in People Analytics (eBook, PDF)47,95 €
- Santiago BarredaBayesian Multilevel Models for Repeated Measures Data (eBook, PDF)54,95 €
- Holmes FinchApplied Regularization Methods for the Social Sciences (eBook, PDF)47,95 €
-
-
-
This book includes chapters on specifying the correct linear regression model, adjusting for measurement error, understanding the effects of influential observations, and using multilevel data.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 436
- Erscheinungstermin: 12. September 2021
- Englisch
- ISBN-13: 9781000437966
- Artikelnr.: 62302363
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 436
- Erscheinungstermin: 12. September 2021
- Englisch
- ISBN-13: 9781000437966
- Artikelnr.: 62302363
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
John P. Hoffmann is a professor of sociology at Brigham Young University. He holds a PhD in Criminology from the State University of New York at Albany and a Masters of Public Health (MPH) from Emory University. He has worked at the U.S. Centers for Disease Control and Prevention (CDC) and the National Opinion Research Center (NORC) of the University of Chicago; and taught at Hokkaido University and the University of South Carolina. Hoffmann is the author of more than 100 journal articles and book chapters and 10 books on applied statistics, criminology, and the sociology of religion.
1. Introduction 2. Review of Elementary Statistical Concepts 3. Simple
Linear Regression Models 4. Multiple Linear Regression Models 5. The
ANOVA Table and Goodness-of-Fit Statistics 6. Comparing Linear Regression
Models 7. Indicator Variables in Linear Regression Models 8.
Independence 9. Homoscedasticity 10. Collinearity and Multicollinearity
11. Normality, Linearity, and Interaction Effects 12. Model Specification
13. Measurement Errors 14. Influential Observations: Leverage Points and
Outliers 15. Multilevel Linear Regression Models 16. A Brief Introduction
to Logistic Regression 17. Conclusions Appendix A: Data Management
Appendix B: Using Simulations to Examine Assumptions of Linear Regression
Models Appendix C: Formulas Appendix C: User-Written R Packages Employed
in Examples
Linear Regression Models 4. Multiple Linear Regression Models 5. The
ANOVA Table and Goodness-of-Fit Statistics 6. Comparing Linear Regression
Models 7. Indicator Variables in Linear Regression Models 8.
Independence 9. Homoscedasticity 10. Collinearity and Multicollinearity
11. Normality, Linearity, and Interaction Effects 12. Model Specification
13. Measurement Errors 14. Influential Observations: Leverage Points and
Outliers 15. Multilevel Linear Regression Models 16. A Brief Introduction
to Logistic Regression 17. Conclusions Appendix A: Data Management
Appendix B: Using Simulations to Examine Assumptions of Linear Regression
Models Appendix C: Formulas Appendix C: User-Written R Packages Employed
in Examples
1. Introduction
2. Review of Elementary Statistical Concepts
3. Simple Linear Regression Models
4. Multiple Linear Regression Models
5. The ANOVA Table and Goodness-of-Fit Statistics
6. Comparing Linear Regression Models
7. Indicator Variables in Linear Regression Models
8. Independence
9. Homoscedasticity
10. Collinearity and Multicollinearity
11. Normality, Linearity, and Interaction Effects
12. Model Specification
13. Measurement Errors
14. Influential Observations: Leverage Points and Outliers
15. Multilevel Linear Regression Models
16. A Brief Introduction to Logistic Regression
17. Conclusions
Appendix A: Data Management
Appendix B: Using Simulations to Examine Assumptions of Linear Regression Models
Appendix C: Formulas
Appendix C: User-Written R Packages Employed in Examples
2. Review of Elementary Statistical Concepts
3. Simple Linear Regression Models
4. Multiple Linear Regression Models
5. The ANOVA Table and Goodness-of-Fit Statistics
6. Comparing Linear Regression Models
7. Indicator Variables in Linear Regression Models
8. Independence
9. Homoscedasticity
10. Collinearity and Multicollinearity
11. Normality, Linearity, and Interaction Effects
12. Model Specification
13. Measurement Errors
14. Influential Observations: Leverage Points and Outliers
15. Multilevel Linear Regression Models
16. A Brief Introduction to Logistic Regression
17. Conclusions
Appendix A: Data Management
Appendix B: Using Simulations to Examine Assumptions of Linear Regression Models
Appendix C: Formulas
Appendix C: User-Written R Packages Employed in Examples
1. Introduction 2. Review of Elementary Statistical Concepts 3. Simple
Linear Regression Models 4. Multiple Linear Regression Models 5. The
ANOVA Table and Goodness-of-Fit Statistics 6. Comparing Linear Regression
Models 7. Indicator Variables in Linear Regression Models 8.
Independence 9. Homoscedasticity 10. Collinearity and Multicollinearity
11. Normality, Linearity, and Interaction Effects 12. Model Specification
13. Measurement Errors 14. Influential Observations: Leverage Points and
Outliers 15. Multilevel Linear Regression Models 16. A Brief Introduction
to Logistic Regression 17. Conclusions Appendix A: Data Management
Appendix B: Using Simulations to Examine Assumptions of Linear Regression
Models Appendix C: Formulas Appendix C: User-Written R Packages Employed
in Examples
Linear Regression Models 4. Multiple Linear Regression Models 5. The
ANOVA Table and Goodness-of-Fit Statistics 6. Comparing Linear Regression
Models 7. Indicator Variables in Linear Regression Models 8.
Independence 9. Homoscedasticity 10. Collinearity and Multicollinearity
11. Normality, Linearity, and Interaction Effects 12. Model Specification
13. Measurement Errors 14. Influential Observations: Leverage Points and
Outliers 15. Multilevel Linear Regression Models 16. A Brief Introduction
to Logistic Regression 17. Conclusions Appendix A: Data Management
Appendix B: Using Simulations to Examine Assumptions of Linear Regression
Models Appendix C: Formulas Appendix C: User-Written R Packages Employed
in Examples
1. Introduction
2. Review of Elementary Statistical Concepts
3. Simple Linear Regression Models
4. Multiple Linear Regression Models
5. The ANOVA Table and Goodness-of-Fit Statistics
6. Comparing Linear Regression Models
7. Indicator Variables in Linear Regression Models
8. Independence
9. Homoscedasticity
10. Collinearity and Multicollinearity
11. Normality, Linearity, and Interaction Effects
12. Model Specification
13. Measurement Errors
14. Influential Observations: Leverage Points and Outliers
15. Multilevel Linear Regression Models
16. A Brief Introduction to Logistic Regression
17. Conclusions
Appendix A: Data Management
Appendix B: Using Simulations to Examine Assumptions of Linear Regression Models
Appendix C: Formulas
Appendix C: User-Written R Packages Employed in Examples
2. Review of Elementary Statistical Concepts
3. Simple Linear Regression Models
4. Multiple Linear Regression Models
5. The ANOVA Table and Goodness-of-Fit Statistics
6. Comparing Linear Regression Models
7. Indicator Variables in Linear Regression Models
8. Independence
9. Homoscedasticity
10. Collinearity and Multicollinearity
11. Normality, Linearity, and Interaction Effects
12. Model Specification
13. Measurement Errors
14. Influential Observations: Leverage Points and Outliers
15. Multilevel Linear Regression Models
16. A Brief Introduction to Logistic Regression
17. Conclusions
Appendix A: Data Management
Appendix B: Using Simulations to Examine Assumptions of Linear Regression Models
Appendix C: Formulas
Appendix C: User-Written R Packages Employed in Examples