Manfred Andrie, Paul Meier
Lineare Algebra und Geometrie für Ingenieure (eBook, PDF)
Eine anwendungsbezogene Einführung mit Übungen
-26%11
36,99 €
49,95 €**
36,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
18 °P sammeln
-26%11
36,99 €
49,95 €**
36,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
18 °P sammeln
Als Download kaufen
49,95 €****
-26%11
36,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
18 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
49,95 €****
-26%11
36,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
18 °P sammeln
Manfred Andrie, Paul Meier
Lineare Algebra und Geometrie für Ingenieure (eBook, PDF)
Eine anwendungsbezogene Einführung mit Übungen
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Geometrisch anschauliche und anwendungsbezogene Darstellung mit zahlreichen praxisnahen Anwendungen sowie Übungen mit Lösungen.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 14.07MB
Andere Kunden interessierten sich auch für
- -22%11Roland SchmiederLineare Algebra und Analytische Geometrie in Fragen und Übungsaufgaben (eBook, PDF)42,99 €
- -26%11Egon SeiffartLineare Algebra (eBook, PDF)36,99 €
- -33%11Josef TrölßAngewandte Mathematik mit Mathcad. Lehr- und Arbeitsbuch (eBook, PDF)33,26 €
- -33%11Gert BöhmeAlgebra (eBook, PDF)33,26 €
- -22%11Klemens BurgHöhere Mathematik für Ingenieure Band II (eBook, PDF)42,99 €
- -33%11Heinz EgererIngenieur-Mathematik. Lehrbuch der höheren Mathematik für die technischen Berufe (eBook, PDF)33,26 €
- -22%11Fritz WickeEinführung in die Höhere Mathematik (eBook, PDF)42,99 €
- -30%11
- -22%11
- -43%11
Geometrisch anschauliche und anwendungsbezogene Darstellung mit zahlreichen praxisnahen Anwendungen sowie Übungen mit Lösungen.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 300
- Erscheinungstermin: 13. März 2013
- Deutsch
- ISBN-13: 9783642957987
- Artikelnr.: 53130830
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 300
- Erscheinungstermin: 13. März 2013
- Deutsch
- ISBN-13: 9783642957987
- Artikelnr.: 53130830
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
A Mengen.- 1 Grundbegriffe.- 2 Verknüpfungen von Mengen.- B Abbildungen und Relationen.- 3 Begriff der Abbildung.- 4 Kartesisches Produkt.- 5 Begriff der Relation.- 6 Anwendungen: Darstellende Geometrie.- C Zahlen.- 7 Menge der reellen Zahlen.- 8 Eigenschaften reeller Zahlen.- 9 Ungleichungen und Beträge.- 10 Potenzen und Wurzeln.- 11 Logarithmen.- 12 Dualsystem und Digitalrechner.- 13 Anwendungen.- 14 Übungen: Dualzahlen, Schaltfunktionen.- D Trigonometrie.- 15 Winkel als geometrische Größe.- 16 Trigonometrische Funktionen.- 17 Zyklometrische Funktionen.- 18 Sätze der Trigonometrie.- 19 Übungen: Trigonometrie und ihre Anwendung im Vermessungswesen.- E Vektoren.- 20 Begriff des Vektors.- 21 Addition und Subtraktion von Vektoren.- 22 Multiplikation eines Vektors mit einem Skalar.- 23 Winkel zwischen zwei Vektoren.- 24 Vektoren im kartesischen Koordinatensystem.- 25 Begriff des Vektorraumes.- 26 Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren.- 27 Komponentendarstellung eines Vektors; Basis und Dimension eines Vektorraumes.- 28 Der n-dimensionale Vektorraum.- 29 Übungen: Zusammensetzung und Zerlegung ebener und räumlicher Vektoren.- 30 Skalares Produkt zweier Vektoren.- 31 Vektorielles Produkt zweier Vektoren.- 32 Anwendungen: Geometrie und Mechanik.- 33 Übungen: Skalarprodukt, Vektorprodukt und Zerlegung von Kräften.- F Matrizen.- 34 Begriff der Matrix.- 35 Addition und Subtraktion von Matrizen.- 36 Multiplikation einer Matrix mit einem Skalar.- 37 Multiplikation von Matrizen.- 38 Spezielle Matrizen.- 39 Lineare Abbildungen.- 40 Anwendungen: Geometrische Abbildungen.- 41 Übungen: Rechnen mit Matrizen.- G Determinanten.- 42 Determinanten zweiter Ordnung.- 43 Determinanten dritter Ordnung.- 44 Determinanten n-ter Ordnung.- H LineareGleichungssysteme.- 45 Begriff des linearen Gleichungssystems.- 46 Cramersche Regel.- 47 Gauß-Algorithmus.- 48 Anwendung: Berechnung der inversen Matrix nach Gauß-Jordan.- 49 Übungen: Determinanten, lineare Gleichungssysteme, Cramersche Regel, Gauß-Algorithmus.- J Geometrie in der Ebene.- 50 Geraden in der Ebene.- 51 Ebene Koordinatensysteme.- 52 Abbildungen in der Ebene.- 53 Übungen: Geraden, Schnittpunkte und Schnittwinkel von Geraden.- K Geometrie im Raum.- 54 Geraden im Raum.- 55 Ebenen im Raum.- 56 Abstand zwischen Punkten, Geraden und Ebenen.- 57 Räumliche Koordinatensysteme.- 58 Anwendungen: Finite Elemente und natürliche Koordinaten.- 59 Übungen: Geraden und Ebenen im Raum.- L Kurven Zweiter Ordnung.- 60 Kreis.- 61 Ellipse.- 62 Hyperbel.- 63 Parabel.- 64 Zusammenhang zwischen den Kegelschnitten.- 65 Anwendungen: Kreis in der CAD-Geometrie und im Vermessungswesen.- 66 Übungen: Kreis (Ausrunden), Ellipse, Hyperbel und Parabel.- 67 Hauptachsentransformation.- 68 Übungen: Hauptachsentransformation.- 69 Anwendungen: Trägheitsmomente ebener Flächen.- M Eigenwerte und Eigenvektoren.- 70 Eigenwerte und Eigenvektoren einer (n,n)-Matrix.- 71 Hauptachsentransformation für Kurven zweiter Ordnung.- 72 Hauptachsentransformation für Flächen zweiter Ordnung.- 73 Anwendungen: Flächenträgheitsmomente und Massenträgheitsmomente.- N Ausblick.- 74 Spline- und Bézier-Kurven in der CAD-Geometrie.- Lösungen.- Symbolverzeichnis.- Register.
A Mengen.- 1 Grundbegriffe.- 2 Verknüpfungen von Mengen.- B Abbildungen und Relationen.- 3 Begriff der Abbildung.- 4 Kartesisches Produkt.- 5 Begriff der Relation.- 6 Anwendungen: Darstellende Geometrie.- C Zahlen.- 7 Menge der reellen Zahlen.- 8 Eigenschaften reeller Zahlen.- 9 Ungleichungen und Beträge.- 10 Potenzen und Wurzeln.- 11 Logarithmen.- 12 Dualsystem und Digitalrechner.- 13 Anwendungen.- 14 Übungen: Dualzahlen, Schaltfunktionen.- D Trigonometrie.- 15 Winkel als geometrische Größe.- 16 Trigonometrische Funktionen.- 17 Zyklometrische Funktionen.- 18 Sätze der Trigonometrie.- 19 Übungen: Trigonometrie und ihre Anwendung im Vermessungswesen.- E Vektoren.- 20 Begriff des Vektors.- 21 Addition und Subtraktion von Vektoren.- 22 Multiplikation eines Vektors mit einem Skalar.- 23 Winkel zwischen zwei Vektoren.- 24 Vektoren im kartesischen Koordinatensystem.- 25 Begriff des Vektorraumes.- 26 Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren.- 27 Komponentendarstellung eines Vektors; Basis und Dimension eines Vektorraumes.- 28 Der n-dimensionale Vektorraum.- 29 Übungen: Zusammensetzung und Zerlegung ebener und räumlicher Vektoren.- 30 Skalares Produkt zweier Vektoren.- 31 Vektorielles Produkt zweier Vektoren.- 32 Anwendungen: Geometrie und Mechanik.- 33 Übungen: Skalarprodukt, Vektorprodukt und Zerlegung von Kräften.- F Matrizen.- 34 Begriff der Matrix.- 35 Addition und Subtraktion von Matrizen.- 36 Multiplikation einer Matrix mit einem Skalar.- 37 Multiplikation von Matrizen.- 38 Spezielle Matrizen.- 39 Lineare Abbildungen.- 40 Anwendungen: Geometrische Abbildungen.- 41 Übungen: Rechnen mit Matrizen.- G Determinanten.- 42 Determinanten zweiter Ordnung.- 43 Determinanten dritter Ordnung.- 44 Determinanten n-ter Ordnung.- H LineareGleichungssysteme.- 45 Begriff des linearen Gleichungssystems.- 46 Cramersche Regel.- 47 Gauß-Algorithmus.- 48 Anwendung: Berechnung der inversen Matrix nach Gauß-Jordan.- 49 Übungen: Determinanten, lineare Gleichungssysteme, Cramersche Regel, Gauß-Algorithmus.- J Geometrie in der Ebene.- 50 Geraden in der Ebene.- 51 Ebene Koordinatensysteme.- 52 Abbildungen in der Ebene.- 53 Übungen: Geraden, Schnittpunkte und Schnittwinkel von Geraden.- K Geometrie im Raum.- 54 Geraden im Raum.- 55 Ebenen im Raum.- 56 Abstand zwischen Punkten, Geraden und Ebenen.- 57 Räumliche Koordinatensysteme.- 58 Anwendungen: Finite Elemente und natürliche Koordinaten.- 59 Übungen: Geraden und Ebenen im Raum.- L Kurven Zweiter Ordnung.- 60 Kreis.- 61 Ellipse.- 62 Hyperbel.- 63 Parabel.- 64 Zusammenhang zwischen den Kegelschnitten.- 65 Anwendungen: Kreis in der CAD-Geometrie und im Vermessungswesen.- 66 Übungen: Kreis (Ausrunden), Ellipse, Hyperbel und Parabel.- 67 Hauptachsentransformation.- 68 Übungen: Hauptachsentransformation.- 69 Anwendungen: Trägheitsmomente ebener Flächen.- M Eigenwerte und Eigenvektoren.- 70 Eigenwerte und Eigenvektoren einer (n,n)-Matrix.- 71 Hauptachsentransformation für Kurven zweiter Ordnung.- 72 Hauptachsentransformation für Flächen zweiter Ordnung.- 73 Anwendungen: Flächenträgheitsmomente und Massenträgheitsmomente.- N Ausblick.- 74 Spline- und Bézier-Kurven in der CAD-Geometrie.- Lösungen.- Symbolverzeichnis.- Register.