105,95 €
105,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
53 °P sammeln
105,95 €
105,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
53 °P sammeln
Als Download kaufen
105,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
53 °P sammeln
Jetzt verschenken
105,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
53 °P sammeln
  • Format: ePub

Liquid Acquisition Devices for Advanced In-Space Cryogenic Propulsion Systems discusses the importance of reliable cryogenic systems, a pivotal part of everything from engine propulsion to fuel deposits. As some of the most efficient systems involve advanced cryogenic fluid management systems that present challenging issues, the book tackles issues such as the difficulty in obtaining data, the lack of quality data and models, and the complexity in trying to model these systems.
The book presents models and experimental data based on rare and hard-to-obtain cryogenic data. Through clear
…mehr

Produktbeschreibung
Liquid Acquisition Devices for Advanced In-Space Cryogenic Propulsion Systems discusses the importance of reliable cryogenic systems, a pivotal part of everything from engine propulsion to fuel deposits. As some of the most efficient systems involve advanced cryogenic fluid management systems that present challenging issues, the book tackles issues such as the difficulty in obtaining data, the lack of quality data and models, and the complexity in trying to model these systems.

The book presents models and experimental data based on rare and hard-to-obtain cryogenic data. Through clear descriptions of practical data and models, readers will explore the development of robust and flexible liquid acquisition devices (LAD) through component-level and full-scale ground experiments, as well as analytical tools.

This book presents new and rare experimental data, as well as analytical models, in a fundamental area to the aerospace and space-flight communities. With this data, the reader can consider new and improved ways to design, analyze, and build expensive flight systems.

  • Presents a definitive reference for design ideas, analysis tools, and performance data on cryogenic liquid acquisition devices
  • Provides historical perspectives to present fundamental design models and performance data, which are applied to two practical examples throughout the book
  • Describes a series of models to optimize liquid acquisition device performance, which are confirmed through a variety of parametric component level tests
  • Includes video clips of experiments on a companion website

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dr. Jason Hartwig is a research aerospace engineer in the Propellants and Propulsion branch at the NASA Glenn Research Center in Cleveland, OH and is the lead technologist for cryogenic propellant transfer for the Agency. Jason has a BS in Physics, an MS in Mechanical Engineering, and a Doctorate in Aerospace Engineering from Case Western Reserve University. He's been the PI on multiple cryogenic propulsion test programs at Glenn (CFM, PCAD, CPST, eCryo). Jason has 10 years of experience in the areas of cryogenic engineering, laser diagnostics, combustion, and propulsion. Jason's areas of expertise include design analysis and testing of cryogenic propellant management devices, line and tank chill and fill techniques, two phase cryogenic flow boiling and fluid mechanics, tank pressurization systems, and passive multi-layer insulation systems. Dr. Hartwig is also actively involved at NASA and Case in training and mentoring students through various programs.