101,95 €
101,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
51 °P sammeln
101,95 €
101,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
51 °P sammeln
Als Download kaufen
101,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
51 °P sammeln
Jetzt verschenken
101,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
51 °P sammeln
  • Format: PDF

This book is devoted to the development of the local gradient theory of dielectrics. It presents a brief description of the known approaches to the construction of generalized (integral- and gradient-type) continuous theories of dielectrics. It describes a new continuum-thermodynamic approach to the construction of nonlinear high-order gradient theory of thermoelastic non-ferromagnetic polarized media. This approach is based on accounting for non-diffusive and non-convective mass fluxes associated with the changes in the material microstructure. Within the linear approximation, the theory has…mehr

Produktbeschreibung
This book is devoted to the development of the local gradient theory of dielectrics. It presents a brief description of the known approaches to the construction of generalized (integral- and gradient-type) continuous theories of dielectrics. It describes a new continuum-thermodynamic approach to the construction of nonlinear high-order gradient theory of thermoelastic non-ferromagnetic polarized media. This approach is based on accounting for non-diffusive and non-convective mass fluxes associated with the changes in the material microstructure. Within the linear approximation, the theory has been applied to study transition modes of the formation of near-surface inhomogeneity of coupled fields in solids, disjoining pressure in thin films, etc. The theory describes a number of observable phenomena (including the surface, size, flexoelectric, pyroelectric, and thermopolarization effects in centrosymmetric crystals, the Meads anomaly, the high frequency dispersion of elastic waves, etc.) that cannot be explained within the framework of the classical theory of dielectrics.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt


Olha Hrytsyna
is lead researcher at the Department of Mathematical Methods of Computing Experiment, Center of Mathematical Modeling of Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine (IAPMM NASU), Lviv, Ukraine.

Vasyl Kondrat is emeritus professor at Petro Sahaidachnyi National Army Academy, Ukraine. He earned his PhD and DSc in physics and mathematics from the IAMPP NASU in 1978 and 2005, respectively.