This book offers a review of the theory of locally convex quasi *-algebras, authored by two of its contributors over the last 25 years. Quasi *-algebras are partial algebraic structures that are motivated by certain applications in Mathematical Physics. They arise in a natural way by completing a *-algebra under a locally convex *-algebra topology, with respect to which the multiplication is separately continuous.
Among other things, the book presents an unbounded representation theory of quasi *-algebras, together with an analysis of normed quasi *-algebras, their spectral theory and a study of the structure of locally convex quasi *-algebras. Special attention is given to the case where the locally convex quasi *-algebra is obtained by completing a C*-algebra under a locally convex *-algebra topology, coarser than the C*-topology.
Introducing the subject to graduate students and researchers wishing to build on their knowledge of the usualtheory of Banach and/or locally convex algebras, this approach is supported by basic results and a wide variety of examples.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.