Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
An in-depth guide to executing longitudinal confirmatory factor analysis (CFA) and structural equation modeling (SEM) in Mplus, this book uses latent state-trait (LST) theory as a unifying conceptual framework, including the relevant coefficients of consistency, occasion specificity, and reliability. Following a standard format, chapters review the theoretical underpinnings, strengths, and limitations of the various models; present data examples; and demonstrate each model's application and interpretation in Mplus, with numerous screen shots and output excerpts. Coverage encompasses both…mehr
An in-depth guide to executing longitudinal confirmatory factor analysis (CFA) and structural equation modeling (SEM) in Mplus, this book uses latent state-trait (LST) theory as a unifying conceptual framework, including the relevant coefficients of consistency, occasion specificity, and reliability. Following a standard format, chapters review the theoretical underpinnings, strengths, and limitations of the various models; present data examples; and demonstrate each model's application and interpretation in Mplus, with numerous screen shots and output excerpts. Coverage encompasses both traditional models (autoregressive, change score, and growth curve models) and LST models for analyzing single- and multiple-indicator data. The book discusses measurement equivalence testing, intensive longitudinal data modeling, and missing data handling, and provides strategies for model selection and reporting of results. User-friendly features include special-topic boxes, chapter summaries, and suggestions for further reading. The companion website features data sets, annotated syntax files, and output for all of the examples.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, D ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Christian Geiser, PhD, is a former professor of quantitative psychology. He currently works as an instructor and statistical consultant. His areas of expertise are in structural equation modeling, longitudinal data analysis, latent class modeling, multitrait-multimethod analysis, and measurement. His website is https://christiangeiser.com/.
Inhaltsangabe
List of Abbreviations Guide to Statistical Symbols 1. A Measurement Theoretical Framework for Longitudinal Data: Introduction to Latent State-Trait Theory 1.1 Introduction 1.2 Latent State-Trait Theory 1.3 Chapter Summary 1.4 Recommended Readings 2. Single-Factor Longitudinal Models for Single-Indicator Data 2.1 Introduction 2.2 The Random Intercept Model 2.3 The Random and Fixed Intercepts Model 2.4 The ¿-Congeneric Model 2.5 Chapter Summary 2.6 Recommended Reading 3. Multifactor Longitudinal Models for Single-Indicator Data 3.1 Introduction 3.2 The Simplex Model 3.3 The Latent Change Score Model 3.4 The Trait-State-Error Model 3.5 Latent Growth Curve Models 3.6 Chapter Summary 3.7 Recommended Readings 4. Testing Measurement Equivalence in Longitudinal Studies 4.1 Introduction 4.2 The Latent State (LS) Model 4.3 The Latent State Model with Indicator-Specific Residual Factors (LS-IS Model) 4.4 Chapter Summary 4.5 Recommended Readings 5. Multiple-Indicator Longitudinal Models 5.1 Introduction 5.2 Latent State Change (LSC) Models 5.3 The Latent Autoregressive/Cross-Lagged States (LACS) Model 5.4 Latent State-Trait (LST) Models 5.5 Latent Trait Change (LTC) Models 5.6 Chapter Summary 5.7 Recommended Readings 6. Modeling Intensive Longitudinal Data 6.1 Introduction 6.2 Special features of Intensive Longitudinal Data 6.3 Specifying Longitudinal SEMs for Intensive Longitudinal Data 6.4 Chapter Summary 6.5 Recommended Readings 7. Missing Data Handling 7.1 Introduction 7.2 Missing Data Mechanisms 7.3 Maximum Likelihood Missing Data Handling 7.4 Multiple Imputation (MI) 7.5 Planned Missing Data Designs 7.6 Chapter Summary 7.7 Recommended Readings 8. How to Choose between Models and Report the Results 8.1 Model Selection 8.2 Reporting Results 8.3 Chapter Summary 8.4 Recommended Readings References Author Index Subject Index
List of Abbreviations Guide to Statistical Symbols 1. A Measurement Theoretical Framework for Longitudinal Data: Introduction to Latent State-Trait Theory 1.1 Introduction 1.2 Latent State-Trait Theory 1.3 Chapter Summary 1.4 Recommended Readings 2. Single-Factor Longitudinal Models for Single-Indicator Data 2.1 Introduction 2.2 The Random Intercept Model 2.3 The Random and Fixed Intercepts Model 2.4 The ¿-Congeneric Model 2.5 Chapter Summary 2.6 Recommended Reading 3. Multifactor Longitudinal Models for Single-Indicator Data 3.1 Introduction 3.2 The Simplex Model 3.3 The Latent Change Score Model 3.4 The Trait-State-Error Model 3.5 Latent Growth Curve Models 3.6 Chapter Summary 3.7 Recommended Readings 4. Testing Measurement Equivalence in Longitudinal Studies 4.1 Introduction 4.2 The Latent State (LS) Model 4.3 The Latent State Model with Indicator-Specific Residual Factors (LS-IS Model) 4.4 Chapter Summary 4.5 Recommended Readings 5. Multiple-Indicator Longitudinal Models 5.1 Introduction 5.2 Latent State Change (LSC) Models 5.3 The Latent Autoregressive/Cross-Lagged States (LACS) Model 5.4 Latent State-Trait (LST) Models 5.5 Latent Trait Change (LTC) Models 5.6 Chapter Summary 5.7 Recommended Readings 6. Modeling Intensive Longitudinal Data 6.1 Introduction 6.2 Special features of Intensive Longitudinal Data 6.3 Specifying Longitudinal SEMs for Intensive Longitudinal Data 6.4 Chapter Summary 6.5 Recommended Readings 7. Missing Data Handling 7.1 Introduction 7.2 Missing Data Mechanisms 7.3 Maximum Likelihood Missing Data Handling 7.4 Multiple Imputation (MI) 7.5 Planned Missing Data Designs 7.6 Chapter Summary 7.7 Recommended Readings 8. How to Choose between Models and Report the Results 8.1 Model Selection 8.2 Reporting Results 8.3 Chapter Summary 8.4 Recommended Readings References Author Index Subject Index
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826