125,95 €
125,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
63 °P sammeln
125,95 €
125,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
63 °P sammeln
Als Download kaufen
125,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
63 °P sammeln
Jetzt verschenken
125,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
63 °P sammeln
  • Format: ePub

Low-Grade Thermal Energy Harvesting: Advances in Thermoelectrics, Materials, and Emerging Applications provides readers with fundamental and key concepts surrounding low-grade thermal energy conversion while also reviewing the latest research directions. The book covers the most promising and emerging technologies for low-grade heat recovery, harvesting and conversion, including wearable thermoelectrics and organic thermoelectrics. Each chapter includes key materials, principles, design and fabrication strategies for low-grade heat recovery. Special attention on emerging materials such as…mehr

Produktbeschreibung
Low-Grade Thermal Energy Harvesting: Advances in Thermoelectrics, Materials, and Emerging Applications provides readers with fundamental and key concepts surrounding low-grade thermal energy conversion while also reviewing the latest research directions. The book covers the most promising and emerging technologies for low-grade heat recovery, harvesting and conversion, including wearable thermoelectrics and organic thermoelectrics. Each chapter includes key materials, principles, design and fabrication strategies for low-grade heat recovery. Special attention on emerging materials such as organic composites, 2D materials and nanomaterials are also included. The book emphasizes materials and device structures that enable the powering of wearable electronics and consumer electronics.

The book is suitable for materials scientists and engineers in academia and R&D in manufacturing, industry, energy and electronics.

  • Introduces key concepts and fundamental principles of low-grade thermal energy harvesting, storage and conversion
  • Provides an overview on key materials, design principles and fabrication strategies for devices for low energy harvesting applications
  • Focuses on materials and device designs that enable wearable thermoelectrics and flexible electronics applications

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Prof. Shiren Wang is an Associate Professor at the Department of Materials Science and Engineering at Texas A&M University and leads the Manufacturing Intelligence and Nanomaterial Innovation laboratory. Dr. Wang received BS and MS in Materials Science at BeiHang University (China), and also MS in Manufacturing Systems and PhD in Industrial & Manufacturing Engineering from Florida State University. He was an Assistant Professor during 2007-2012 and an Associate professor during 2012-2014 at Texas Tech University before joining Texas A&M at 2015. He is a recipient of Ed & Linda whitacre Faculty Fellow award in 2012, 2013, and 2014, National Science Foundation CAREER award in 2010, Air Force Summer Faculty Fellowship in 2010, as well as 3M Young Faculty award in 2009, 2010, and 2011. He is also a member of editorial board for two international academic journals, Composites-Part B Engineering, and Journal of Nanomaterials.