Alle Infos zum eBook verschenken
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Written by experts actively involved in the 3GPP standards and product development, LTE for UMTS, Second Edition gives a complete and up-to-date overview of Long Term Evolution (LTE) in a systematic and clear manner. Building upon on the success of the first edition, LTE for UMTS, Second Edition has been revised to now contain improved coverage of the Release 8 LTE details, including field performance results, transport network, self optimized networks and also covering the enhancements done in 3GPP Release 9. This new edition also provides an outlook to Release 10, including the overview of…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 32.19MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 576
- Erscheinungstermin: 17. März 2011
- Englisch
- ISBN-13: 9781119992936
- Artikelnr.: 38247457
- Verlag: John Wiley & Sons
- Seitenzahl: 576
- Erscheinungstermin: 17. März 2011
- Englisch
- ISBN-13: 9781119992936
- Artikelnr.: 38247457
ansisalmi and Antti Toskala 3.1 System Architecture Evolution in 3GPP 23 3.2 Basic System Architecture Configuration with only E-UTRAN Access Network 25 3.2.1 Overview of Basic System Architecture Configuration 25 3.2.2 Logical Elements in Basic System Architecture Configuration 26 3.2.3 Self-configuration of S1-MME and X2 Interfaces 35 3.2.4 Interfaces and Protocols in Basic System Architecture Configuration 36 3.2.5 Roaming in Basic System Architecture Configuration 40 3.3 System Architecture with E-UTRAN and Legacy 3GPP Access Networks 41 3.3.1 Overview of 3GPP Inter-working System Architecture Configuration 41 3.3.2 Additional and Updated Logical Elements in 3GPP Inter-working System Architecture Configuration 42 3.3.3 Interfaces and Protocols in 3GPP Inter-working System Architecture Configuration 44 3.3.4 Inter-working with Legacy 3GPP CS Infrastructure 45 3.4 System Architecture with E-UTRAN and Non-3GPP Access Networks 46 3.4.1 Overview of 3GPP and Non-3GPP Inter-working System Architecture Configuration 46 3.4.2 Additional and Updated Logical Elements in 3GPP Inter-working System Architecture Configuration 48 3.4.3 Interfaces and Protocols in Non-3GPP Inter-working System Architecture Configuration 51 3.5 Inter-working with cdma2000® Access Networks 52 3.5.1 Architecture for cdma2000® HRPD Inter-working 52 3.5.2 Additional and Updated Logical Elements for cdma2000® HRPD Inter-working 54 3.5.3 Protocols and Interfaces in cdma2000® HRPD Inter-working 55 3.5.4 Inter-working with cdma2000® 1xRTT 56 3.6 IMS Architecture 56 3.6.1 Overview 56 3.6.2 Session Management and Routing 58 3.6.3 Databases 59 3.6.4 Services Elements 59 3.6.5 Inter-working Elements 59 3.7 PCC and QoS 60 3.7.1 PCC 60 3.7.2 QoS 62 References 65 4 Introduction to OFDMA and SC-FDMA and to MIMO in LTE 67 Antti Toskala and Timo Lunttila 4.1 Introduction 67 4.2 LTE Multiple Access Background 67 4.3 OFDMA Basics 70 4.4 SC-FDMA Basics 76 4.5 MIMO Basics 80 4.6 Summary 82 References 82 5 Physical Layer 83 Antti Toskala, Timo Lunttila, Esa Tiirola, Kari Hooli, Mieszko Chmiel and Juha Korhonen 5.1 Introduction 83 5.2 Transport Channels and their Mapping to the Physical Channels 83 5.3 Modulation 85 5.4 Uplink User Data Transmission 86 5.5 Downlink User Data Transmission 90 5.6 Uplink Physical Layer Signaling Transmission 93 5.6.1 Physical Uplink Control Channel, PUCCH 94 5.6.2 PUCCH Configuration 98 5.6.3 Control Signaling on PUSCH 102 5.6.4 Uplink Reference Signals 104 5.7 PRACH Structure 109 5.7.1 Physical Random Access Channel 109 5.7.2 Preamble Sequence 110 5.8 Downlink Physical Layer Signaling Transmission 112 5.8.1 Physical Control Format Indicator Channel (PCFICH) 112 5.8.2 Physical Downlink Control Channel (PDCCH) 113 5.8.3 Physical HARQ Indicator Channel (PHICH) 115 5.8.4 Cell-specific Reference Signal 116 5.8.5 Downlink Transmission Modes 117 5.8.6 Physical Broadcast Channel (PBCH) 119 5.8.7 Synchronization Signal 120 5.9 Physical Layer Procedures 120 5.9.1 HARQ Procedure 121 5.9.2 Timing Advance 122 5.9.3 Power Control 123 5.9.4 Paging 124 5.9.5 Random Access Procedure 124 5.9.6 Channel Feedback Reporting Procedure 127 5.9.7 Multiple Input Multiple Output (MIMO) Antenna Technology 132 5.9.8 Cell Search Procedure 134 5.9.9 Half-duplex Operation 134 5.10 UE Capability Classes and Supported Features 135 5.11 Physical Layer Measurements 136 5.11.1 eNodeB Measurements 136 5.11.2 UE Measurements and Measurement Procedure 137 5.12 Physical Layer Parameter Configuration 137 5.13 Summary 138 References 139 6 LTE Radio Protocols 141 Antti Toskala, Woonhee Hwang and Colin Willcock 6.1 Introduction 141 6.2 Protocol Architecture 141 6.3 The Medium Access Control 144 6.3.1 Logical Channels 145 6.3.2 Data Flow in MAC Layer 146 6.4 The Radio Link Control Layer 147 6.4.1 RLC Modes of Operation 148 6.4.2 Data Flow in the RLC Layer 148 6.5 Packet Data Convergence Protocol 150 6.6 Radio Resource Control (RRC) 151 6.6.1 UE States and State Transitions Including Inter-RAT 151 6.6.2 RRC Functions and Signaling Procedures 152 6.6.3 Self Optimization - Minimization of Drive Tests 167 6.7 X2 Interface Protocols 169 6.7.1 Handover on X2 Interface 169 6.7.2 Load Management 171 6.8 Understanding the RRC ASN.1 Protocol Definition 172 6.8.1 ASN.1 Introduction 172 6.8.2 RRC Protocol Definition 173 6.9 Early UE Handling in LTE 182 6.10 Summary 183 References 183 7 Mobility 185 Chris Callender, Harri Holma, Jarkko Koskela and Jussi Reunanen 7.1 Introduction 185 7.2 Mobility Management in Idle State 186 7.2.1 Overview of Idle Mode Mobility 186 7.2.2 Cell Selection and Reselection Process 187 7.2.3 Tracking Area Optimization 189 7.3 Intra-LTE Handovers 190 7.3.1 Procedure 190 7.3.2 Signaling 192 7.3.3 Handover Measurements 195 7.3.4 Automatic Neighbor Relations 195 7.3.5 Handover Frequency 196 7.3.6 Handover Delay 197 7.4 Inter-system Handovers 198 7.5 Differences in E-UTRAN and UTRAN Mobility 199 7.6 Summary 201 References 201 8 Radio Resource Management 203 Harri Holma, Troels Kolding, Daniela Laselva, Klaus Pedersen, Claudio Rosa and Ingo Viering 8.1 Introduction 203 8.2 Overview of RRM Algorithms 203 8.3 Admission Control and QoS Parameters 204 8.4 Downlink Dynamic Scheduling and Link Adaptation 206 8.4.1 Layer 2 Scheduling and Link Adaptation Framework 206 8.4.2 Frequency Domain Packet Scheduling 206 8.4.3 Combined Time and Frequency Domain Scheduling Algorithms 209 8.4.4 Packet Scheduling with MIMO 211 8.4.5 Downlink Packet Scheduling Illustrations 211 8.5 Uplink Dynamic Scheduling and Link Adaptation 216 8.5.1 Signaling to Support Uplink Link Adaptation and Packet Scheduling 219 8.5.2 Uplink Link Adaptation 223 8.5.3 Uplink Packet Scheduling 223 8.6 Interference Management and Power Settings 227 8.6.1 Downlink Transmit Power Settings 227 8.6.2 Uplink Interference Coordination 228 8.7 Discontinuous Transmission and Reception (DTX/DRX) 230 8.8 RRC Connection Maintenance 233 8.9 Summary 233 References 234 9 Self Organizing Networks (SON) 237 Krzysztof Kordybach, Seppo Hamalainen, Cinzia Sartori and Ingo Viering 9.1 Introduction 237 9.2 SON Architecture 238 9.3 SON Functions 241 9.4 Self-Configuration 241 9.4.1 Configuration of Physical Cell ID 242 9.4.2 Automatic Neighbor Relations (ANR) 243 9.5 Self-Optimization and Self-Healing Use Cases 244 9.5.1 Mobility Load Balancing (MLB) 245 9.5.2 Mobility Robustness Optimization (MRO) 248 9.5.3 RACH Optimization 251 9.5.4 Energy Saving 251 9.5.5 Summary of the Available SON Procedures 252 9.5.6 SON Management 252 9.6 3GPP Release 10 Use Cases 253 9.7 Summary 254 References 255 10 Performance 257 Harri Holma, Pasi Kinnunen, Istv
an Z. Kov
acs, Kari Pajukoski, Klaus Pedersen and Jussi Reunanen 10.1 Introduction 257 10.2 Layer 1 Peak Bit Rates 257 10.3 Terminal Categories 260 10.4 Link Level Performance 261 10.4.1 Downlink Link Performance 261 10.4.2 Uplink Link Performance 262 10.5 Link Budgets 265 10.6 Spectral Efficiency 270 10.6.1 System Deployment Scenarios 270 10.6.2 Downlink System Performance 273 10.6.3 Uplink System Performance 275 10.6.4 Multi-antenna MIMO Evolution Beyond 2 × 2 276 10.6.5 Higher Order Sectorization (Six Sectors) 283 10.6.6 Spectral Efficiency as a Function of LTE Bandwidth 285 10.6.7 Spectral Efficiency Evaluation in 3GPP 286 10.6.8 Benchmarking LTE to HSPA 287 10.7 Latency 288 10.7.1 User Plane Latency 288 10.8 LTE Refarming to GSM Spectrum 290 10.9 Dimensioning 291 10.10 Capacity Management Examples from HSPA Networks 293 10.10.1 Data Volume Analysis 293 10.10.2 Cell Performance Analysis 297 10.11 Summary 299 References 301 11 LTE Measurements 303 Marilynn P. Wylie-Green, Harri Holma, Jussi Reunanen and Antti Toskala 11.1 Introduction 303 11.2 Theoretical Peak Data Rates 303 11.3 Laboratory Measurements 305 11.4 Field Measurement Setups 306 11.5 Artificial Load Generation 307 11.6 Peak Data Rates in the Field 310 11.7 Link Adaptation and MIMO Utilization 311 11.8 Handover Performance 313 11.9 Data Rates in Drive Tests 315 11.10 Multi-user Packet Scheduling 317 11.11 Latency 320 11.12 Very Large Cell Size 321 11.13 Summary 323 References 323 12 Transport 325 Torsten Musiol 12.1 Introduction 325 12.2 Protocol Stacks and Interfaces 325 12.2.1 Functional Planes 325 12.2.2 Network Layer (L3) - IP 327 12.2.3 Data Link Layer (L2) - Ethernet 328 12.2.4 Physical Layer (L1) - Ethernet Over Any Media 329 12.2.5 Maximum Transmission Unit Size Issues 330 12.2.6 Traffic Separation and IP Addressing 332 12.3 Transport Aspects of Intra-LTE Handover 334 12.4 Transport Performance Requirements 335 12.4.1 Throughput (Capacity) 335 12.4.2 Delay (Latency), Delay Variation (Jitter) 338 12.4.3 TCP Issues 339 12.5 Transport Network Architecture for LTE 340 12.5.1 Implementation Examples 340 12.5.2 X2 Connectivity Requirements 341 12.5.3 Transport Service Attributes 342 12.6 Quality of Service 342 12.6.1 End-to-End QoS 342 12.6.2 Transport QoS 343 12.7 Transport Security 344 12.8 Synchronization from Transport Network 347 12.8.1 Precision Time Protocol 347 12.8.2 Synchronous Ethernet 348 12.9 Base Station Co-location 348 12.10 Summary 349 References 349 13 Voice over IP (VoIP) 351 Harri Holma, Juha Kallio, Markku Kuusela, Petteri Lund
en, Esa Malkam
aki, Jussi Ojala and Haiming Wang 13.1 Introduction 351 13.2 VoIP Codecs 351 13.3 VoIP Requirements 353 13.4 Delay Budget 354 13.5 Scheduling and Control Channels 354 13.6 LTE Voice Capacity 357 13.7 Voice Capacity Evolution 364 13.8 Uplink Coverage 365 13.9 Circuit Switched Fallback for LTE 368 13.10 Single Radio Voice Call Continuity (SR-VCC) 370 13.11 Summary 372 References 373 14 Performance Requirements 375 Andrea Ancora, Iwajlo Angelow, Dominique Brunel, Chris Callender, Harri Holma, Peter Muszynski, Earl Mc Cune and Laurent Nöel 14.1 Introduction 375 14.2 Frequency Bands and Channel Arrangements 375 14.2.1 Frequency Bands 375 14.2.2 Channel Bandwidth 378 14.2.3 Channel Arrangements 379 14.3 eNodeB RF Transmitter 380 14.3.1 Operating Band Unwanted Emissions 381 14.3.2 Co-existence with Other Systems on Adjacent Carriers Within the Same Operating Band 383 14.3.3 Co-existence with Other Systems in Adjacent Operating Bands 385 14.3.4 Transmitted Signal Quality 389 14.4 eNodeB RF Receiver 392 14.5 eNodeB Demodulation Performance 398 14.6 User Equipment Design Principles and Challenges 403 14.6.1 Introduction 403 14.6.2 RF Subsystem Design Challenges 403 14.6.3 RF-baseband Interface Design Challenges 410 14.6.4 LTE Versus HSDPA Baseband Design Complexity 414 14.7 UE RF Transmitter 418 14.7.1 LTE UE Transmitter Requirement 418 14.7.2 LTE Transmit Modulation Accuracy, EVM 418 14.7.3 Desensitization for Band and Bandwidth Combinations (De-sense) 419 14.7.4 Transmitter Architecture 420 14.8 UE RF Receiver Requirements 421 14.8.1 Reference Sensitivity Level 422 14.8.2 Introduction to UE Self-Desensitization Contributors in FDD UEs 424 14.8.3 ACS, Narrowband Blockers and ADC Design Challenges 429 14.8.4 EVM Contributors: A Comparison between LTE and WCDMA Receivers 435 14.9 UE Demodulation Performance 440 14.9.1 Transmission Modes 440 14.9.2 Channel Modeling and Estimation 443 14.9.3 Demodulation Performance 443 14.10 Requirements for Radio Resource Management 446 14.10.1 Idle State Mobility 447 14.10.2 Connected State Mobility When DRX is not Active 447 14.10.3 Connected State Mobility When DRX is Active 450 14.10.4 Handover Execution Performance Requirements 450 14.11 Summary 451 References 452 15 LTE TDD Mode 455 Che Xiangguang, Troels Kolding, Peter Skov, Wang Haiming and Antti Toskala 15.1 Introduction 455 15.2 LTE TDD Fundamentals 455 15.2.1 The LTE TDD Frame Structure 457 15.2.2 Asymmetric Uplink/Downlink Capacity Allocation 459 15.2.3 Co-existence with TD-SCDMA 459 15.2.4 Channel Reciprocity 460 15.2.5 Multiple Access Schemes 461 15.3 TDD Control Design 462 15.3.1 Common Control Channels 462 15.3.2 Sounding Reference Signal 464 15.3.3 HARQ Process and Timing 465 15.3.4 HARQ Design for UL TTI Bundling 466 15.3.5 UL HARQ-ACK/NACK Transmission 467 15.3.6 DL HARQ-ACK/NACK Transmission 467 15.3.7 DL HARQ-ACK/NACK Transmission with SRI and/or CQI over PUCCH 468 15.4 Semi-persistent Scheduling 469 15.5 MIMO and Dedicated Reference Signals 471 15.6 LTE TDD Performance 472 15.6.1 Link Performance 473 15.6.2 Link Budget and Coverage for the TDD System 473 15.6.3 System Level Performance 477 15.7 Evolution of LTE TDD 483 15.8 LTE TDD Summary 484 References 484 16 LTE-Advanced 487 Mieszko Chmiel, Mihai Enescu, Harri Holma, Tommi Koivisto, Jari Lindholm, Timo Lunttila, Klaus Pedersen, Peter Skov, Timo Roman, Antti Toskala and Yuyu Yan 16.1 Introduction 487 16.2 LTE-Advanced and IMT-Advanced 487 16.3 Requirements 488 16.3.1 Backwards Compatibility 488 16.4 3GPP LTE-Advanced Study Phase 489 16.5 Carrier Aggregation 489 16.5.1 Impact of the Carrier Aggregation for the Higher Layer Protocol and Architecture 492 16.5.2 Physical Layer Details of the Carrier Aggregation 493 16.5.3 Changes in the Physical Layer Uplink due to Carrier Aggregation 493 16.5.4 Changes in the Physical Layer Downlink due to Carrier Aggregation 494 16.5.5 Carrier Aggregation and Mobility 494 16.5.6 Carrier Aggregation Performance 495 16.6 Downlink Multi-antenna Enhancements 496 16.6.1 Reference Symbol Structure in the Downlink 496 16.6.2 Codebook Design 499 16.6.3 System Performance of Downlink Multi-antenna Enhancements 501 16.7 Uplink Multi-antenna Techniques 502 16.7.1 Uplink Multi-antenna Reference Signal Structure 503 16.7.2 Uplink MIMO for PUSCH 503 16.7.3 Uplink MIMO for Control Channels 504 16.7.4 Uplink Multi-user MIMO 505 16.7.5 System Performance of Uplink Multi-antenna Enhancements 505 16.8 Heterogeneous Networks 506 16.9 Relays 508 16.9.1 Architecture (Design Principles of Release 10 Relays) 508 16.9.2 DeNB - RN Link Design 510 16.9.3 Relay Deployment 511 16.10 Release 11 Outlook 512 16.11 Conclusions 513 References 513 17 HSPA Evolution 515 Harri Holma, Karri Ranta-aho and Antti Toskala 17.1 Introduction 515 17.2 Discontinuous Transmission and Reception (DTX/DRX) 515 17.3 Circuit Switched Voice on HSPA 517 17.4 Enhanced FACH and RACH 520 17.5 Downlink MIMO and 64QAM 521 17.5.1 MIMO Workaround Solutions 523 17.6 Dual Cell HSDPA and HSUPA 524 17.7 Multicarrier and Multiband HSDPA 526 17.8 Uplink 16QAM 527 17.9 Terminal Categories 528 17.10 Layer 2 Optimization 529 17.11 Single Frequency Network (SFN) MBMS 531 17.12 Architecture Evolution 531 17.13 Summary 533 References 535 Index 537
ansisalmi and Antti Toskala 3.1 System Architecture Evolution in 3GPP 23 3.2 Basic System Architecture Configuration with only E-UTRAN Access Network 25 3.2.1 Overview of Basic System Architecture Configuration 25 3.2.2 Logical Elements in Basic System Architecture Configuration 26 3.2.3 Self-configuration of S1-MME and X2 Interfaces 35 3.2.4 Interfaces and Protocols in Basic System Architecture Configuration 36 3.2.5 Roaming in Basic System Architecture Configuration 40 3.3 System Architecture with E-UTRAN and Legacy 3GPP Access Networks 41 3.3.1 Overview of 3GPP Inter-working System Architecture Configuration 41 3.3.2 Additional and Updated Logical Elements in 3GPP Inter-working System Architecture Configuration 42 3.3.3 Interfaces and Protocols in 3GPP Inter-working System Architecture Configuration 44 3.3.4 Inter-working with Legacy 3GPP CS Infrastructure 45 3.4 System Architecture with E-UTRAN and Non-3GPP Access Networks 46 3.4.1 Overview of 3GPP and Non-3GPP Inter-working System Architecture Configuration 46 3.4.2 Additional and Updated Logical Elements in 3GPP Inter-working System Architecture Configuration 48 3.4.3 Interfaces and Protocols in Non-3GPP Inter-working System Architecture Configuration 51 3.5 Inter-working with cdma2000® Access Networks 52 3.5.1 Architecture for cdma2000® HRPD Inter-working 52 3.5.2 Additional and Updated Logical Elements for cdma2000® HRPD Inter-working 54 3.5.3 Protocols and Interfaces in cdma2000® HRPD Inter-working 55 3.5.4 Inter-working with cdma2000® 1xRTT 56 3.6 IMS Architecture 56 3.6.1 Overview 56 3.6.2 Session Management and Routing 58 3.6.3 Databases 59 3.6.4 Services Elements 59 3.6.5 Inter-working Elements 59 3.7 PCC and QoS 60 3.7.1 PCC 60 3.7.2 QoS 62 References 65 4 Introduction to OFDMA and SC-FDMA and to MIMO in LTE 67 Antti Toskala and Timo Lunttila 4.1 Introduction 67 4.2 LTE Multiple Access Background 67 4.3 OFDMA Basics 70 4.4 SC-FDMA Basics 76 4.5 MIMO Basics 80 4.6 Summary 82 References 82 5 Physical Layer 83 Antti Toskala, Timo Lunttila, Esa Tiirola, Kari Hooli, Mieszko Chmiel and Juha Korhonen 5.1 Introduction 83 5.2 Transport Channels and their Mapping to the Physical Channels 83 5.3 Modulation 85 5.4 Uplink User Data Transmission 86 5.5 Downlink User Data Transmission 90 5.6 Uplink Physical Layer Signaling Transmission 93 5.6.1 Physical Uplink Control Channel, PUCCH 94 5.6.2 PUCCH Configuration 98 5.6.3 Control Signaling on PUSCH 102 5.6.4 Uplink Reference Signals 104 5.7 PRACH Structure 109 5.7.1 Physical Random Access Channel 109 5.7.2 Preamble Sequence 110 5.8 Downlink Physical Layer Signaling Transmission 112 5.8.1 Physical Control Format Indicator Channel (PCFICH) 112 5.8.2 Physical Downlink Control Channel (PDCCH) 113 5.8.3 Physical HARQ Indicator Channel (PHICH) 115 5.8.4 Cell-specific Reference Signal 116 5.8.5 Downlink Transmission Modes 117 5.8.6 Physical Broadcast Channel (PBCH) 119 5.8.7 Synchronization Signal 120 5.9 Physical Layer Procedures 120 5.9.1 HARQ Procedure 121 5.9.2 Timing Advance 122 5.9.3 Power Control 123 5.9.4 Paging 124 5.9.5 Random Access Procedure 124 5.9.6 Channel Feedback Reporting Procedure 127 5.9.7 Multiple Input Multiple Output (MIMO) Antenna Technology 132 5.9.8 Cell Search Procedure 134 5.9.9 Half-duplex Operation 134 5.10 UE Capability Classes and Supported Features 135 5.11 Physical Layer Measurements 136 5.11.1 eNodeB Measurements 136 5.11.2 UE Measurements and Measurement Procedure 137 5.12 Physical Layer Parameter Configuration 137 5.13 Summary 138 References 139 6 LTE Radio Protocols 141 Antti Toskala, Woonhee Hwang and Colin Willcock 6.1 Introduction 141 6.2 Protocol Architecture 141 6.3 The Medium Access Control 144 6.3.1 Logical Channels 145 6.3.2 Data Flow in MAC Layer 146 6.4 The Radio Link Control Layer 147 6.4.1 RLC Modes of Operation 148 6.4.2 Data Flow in the RLC Layer 148 6.5 Packet Data Convergence Protocol 150 6.6 Radio Resource Control (RRC) 151 6.6.1 UE States and State Transitions Including Inter-RAT 151 6.6.2 RRC Functions and Signaling Procedures 152 6.6.3 Self Optimization - Minimization of Drive Tests 167 6.7 X2 Interface Protocols 169 6.7.1 Handover on X2 Interface 169 6.7.2 Load Management 171 6.8 Understanding the RRC ASN.1 Protocol Definition 172 6.8.1 ASN.1 Introduction 172 6.8.2 RRC Protocol Definition 173 6.9 Early UE Handling in LTE 182 6.10 Summary 183 References 183 7 Mobility 185 Chris Callender, Harri Holma, Jarkko Koskela and Jussi Reunanen 7.1 Introduction 185 7.2 Mobility Management in Idle State 186 7.2.1 Overview of Idle Mode Mobility 186 7.2.2 Cell Selection and Reselection Process 187 7.2.3 Tracking Area Optimization 189 7.3 Intra-LTE Handovers 190 7.3.1 Procedure 190 7.3.2 Signaling 192 7.3.3 Handover Measurements 195 7.3.4 Automatic Neighbor Relations 195 7.3.5 Handover Frequency 196 7.3.6 Handover Delay 197 7.4 Inter-system Handovers 198 7.5 Differences in E-UTRAN and UTRAN Mobility 199 7.6 Summary 201 References 201 8 Radio Resource Management 203 Harri Holma, Troels Kolding, Daniela Laselva, Klaus Pedersen, Claudio Rosa and Ingo Viering 8.1 Introduction 203 8.2 Overview of RRM Algorithms 203 8.3 Admission Control and QoS Parameters 204 8.4 Downlink Dynamic Scheduling and Link Adaptation 206 8.4.1 Layer 2 Scheduling and Link Adaptation Framework 206 8.4.2 Frequency Domain Packet Scheduling 206 8.4.3 Combined Time and Frequency Domain Scheduling Algorithms 209 8.4.4 Packet Scheduling with MIMO 211 8.4.5 Downlink Packet Scheduling Illustrations 211 8.5 Uplink Dynamic Scheduling and Link Adaptation 216 8.5.1 Signaling to Support Uplink Link Adaptation and Packet Scheduling 219 8.5.2 Uplink Link Adaptation 223 8.5.3 Uplink Packet Scheduling 223 8.6 Interference Management and Power Settings 227 8.6.1 Downlink Transmit Power Settings 227 8.6.2 Uplink Interference Coordination 228 8.7 Discontinuous Transmission and Reception (DTX/DRX) 230 8.8 RRC Connection Maintenance 233 8.9 Summary 233 References 234 9 Self Organizing Networks (SON) 237 Krzysztof Kordybach, Seppo Hamalainen, Cinzia Sartori and Ingo Viering 9.1 Introduction 237 9.2 SON Architecture 238 9.3 SON Functions 241 9.4 Self-Configuration 241 9.4.1 Configuration of Physical Cell ID 242 9.4.2 Automatic Neighbor Relations (ANR) 243 9.5 Self-Optimization and Self-Healing Use Cases 244 9.5.1 Mobility Load Balancing (MLB) 245 9.5.2 Mobility Robustness Optimization (MRO) 248 9.5.3 RACH Optimization 251 9.5.4 Energy Saving 251 9.5.5 Summary of the Available SON Procedures 252 9.5.6 SON Management 252 9.6 3GPP Release 10 Use Cases 253 9.7 Summary 254 References 255 10 Performance 257 Harri Holma, Pasi Kinnunen, Istv
an Z. Kov
acs, Kari Pajukoski, Klaus Pedersen and Jussi Reunanen 10.1 Introduction 257 10.2 Layer 1 Peak Bit Rates 257 10.3 Terminal Categories 260 10.4 Link Level Performance 261 10.4.1 Downlink Link Performance 261 10.4.2 Uplink Link Performance 262 10.5 Link Budgets 265 10.6 Spectral Efficiency 270 10.6.1 System Deployment Scenarios 270 10.6.2 Downlink System Performance 273 10.6.3 Uplink System Performance 275 10.6.4 Multi-antenna MIMO Evolution Beyond 2 × 2 276 10.6.5 Higher Order Sectorization (Six Sectors) 283 10.6.6 Spectral Efficiency as a Function of LTE Bandwidth 285 10.6.7 Spectral Efficiency Evaluation in 3GPP 286 10.6.8 Benchmarking LTE to HSPA 287 10.7 Latency 288 10.7.1 User Plane Latency 288 10.8 LTE Refarming to GSM Spectrum 290 10.9 Dimensioning 291 10.10 Capacity Management Examples from HSPA Networks 293 10.10.1 Data Volume Analysis 293 10.10.2 Cell Performance Analysis 297 10.11 Summary 299 References 301 11 LTE Measurements 303 Marilynn P. Wylie-Green, Harri Holma, Jussi Reunanen and Antti Toskala 11.1 Introduction 303 11.2 Theoretical Peak Data Rates 303 11.3 Laboratory Measurements 305 11.4 Field Measurement Setups 306 11.5 Artificial Load Generation 307 11.6 Peak Data Rates in the Field 310 11.7 Link Adaptation and MIMO Utilization 311 11.8 Handover Performance 313 11.9 Data Rates in Drive Tests 315 11.10 Multi-user Packet Scheduling 317 11.11 Latency 320 11.12 Very Large Cell Size 321 11.13 Summary 323 References 323 12 Transport 325 Torsten Musiol 12.1 Introduction 325 12.2 Protocol Stacks and Interfaces 325 12.2.1 Functional Planes 325 12.2.2 Network Layer (L3) - IP 327 12.2.3 Data Link Layer (L2) - Ethernet 328 12.2.4 Physical Layer (L1) - Ethernet Over Any Media 329 12.2.5 Maximum Transmission Unit Size Issues 330 12.2.6 Traffic Separation and IP Addressing 332 12.3 Transport Aspects of Intra-LTE Handover 334 12.4 Transport Performance Requirements 335 12.4.1 Throughput (Capacity) 335 12.4.2 Delay (Latency), Delay Variation (Jitter) 338 12.4.3 TCP Issues 339 12.5 Transport Network Architecture for LTE 340 12.5.1 Implementation Examples 340 12.5.2 X2 Connectivity Requirements 341 12.5.3 Transport Service Attributes 342 12.6 Quality of Service 342 12.6.1 End-to-End QoS 342 12.6.2 Transport QoS 343 12.7 Transport Security 344 12.8 Synchronization from Transport Network 347 12.8.1 Precision Time Protocol 347 12.8.2 Synchronous Ethernet 348 12.9 Base Station Co-location 348 12.10 Summary 349 References 349 13 Voice over IP (VoIP) 351 Harri Holma, Juha Kallio, Markku Kuusela, Petteri Lund
en, Esa Malkam
aki, Jussi Ojala and Haiming Wang 13.1 Introduction 351 13.2 VoIP Codecs 351 13.3 VoIP Requirements 353 13.4 Delay Budget 354 13.5 Scheduling and Control Channels 354 13.6 LTE Voice Capacity 357 13.7 Voice Capacity Evolution 364 13.8 Uplink Coverage 365 13.9 Circuit Switched Fallback for LTE 368 13.10 Single Radio Voice Call Continuity (SR-VCC) 370 13.11 Summary 372 References 373 14 Performance Requirements 375 Andrea Ancora, Iwajlo Angelow, Dominique Brunel, Chris Callender, Harri Holma, Peter Muszynski, Earl Mc Cune and Laurent Nöel 14.1 Introduction 375 14.2 Frequency Bands and Channel Arrangements 375 14.2.1 Frequency Bands 375 14.2.2 Channel Bandwidth 378 14.2.3 Channel Arrangements 379 14.3 eNodeB RF Transmitter 380 14.3.1 Operating Band Unwanted Emissions 381 14.3.2 Co-existence with Other Systems on Adjacent Carriers Within the Same Operating Band 383 14.3.3 Co-existence with Other Systems in Adjacent Operating Bands 385 14.3.4 Transmitted Signal Quality 389 14.4 eNodeB RF Receiver 392 14.5 eNodeB Demodulation Performance 398 14.6 User Equipment Design Principles and Challenges 403 14.6.1 Introduction 403 14.6.2 RF Subsystem Design Challenges 403 14.6.3 RF-baseband Interface Design Challenges 410 14.6.4 LTE Versus HSDPA Baseband Design Complexity 414 14.7 UE RF Transmitter 418 14.7.1 LTE UE Transmitter Requirement 418 14.7.2 LTE Transmit Modulation Accuracy, EVM 418 14.7.3 Desensitization for Band and Bandwidth Combinations (De-sense) 419 14.7.4 Transmitter Architecture 420 14.8 UE RF Receiver Requirements 421 14.8.1 Reference Sensitivity Level 422 14.8.2 Introduction to UE Self-Desensitization Contributors in FDD UEs 424 14.8.3 ACS, Narrowband Blockers and ADC Design Challenges 429 14.8.4 EVM Contributors: A Comparison between LTE and WCDMA Receivers 435 14.9 UE Demodulation Performance 440 14.9.1 Transmission Modes 440 14.9.2 Channel Modeling and Estimation 443 14.9.3 Demodulation Performance 443 14.10 Requirements for Radio Resource Management 446 14.10.1 Idle State Mobility 447 14.10.2 Connected State Mobility When DRX is not Active 447 14.10.3 Connected State Mobility When DRX is Active 450 14.10.4 Handover Execution Performance Requirements 450 14.11 Summary 451 References 452 15 LTE TDD Mode 455 Che Xiangguang, Troels Kolding, Peter Skov, Wang Haiming and Antti Toskala 15.1 Introduction 455 15.2 LTE TDD Fundamentals 455 15.2.1 The LTE TDD Frame Structure 457 15.2.2 Asymmetric Uplink/Downlink Capacity Allocation 459 15.2.3 Co-existence with TD-SCDMA 459 15.2.4 Channel Reciprocity 460 15.2.5 Multiple Access Schemes 461 15.3 TDD Control Design 462 15.3.1 Common Control Channels 462 15.3.2 Sounding Reference Signal 464 15.3.3 HARQ Process and Timing 465 15.3.4 HARQ Design for UL TTI Bundling 466 15.3.5 UL HARQ-ACK/NACK Transmission 467 15.3.6 DL HARQ-ACK/NACK Transmission 467 15.3.7 DL HARQ-ACK/NACK Transmission with SRI and/or CQI over PUCCH 468 15.4 Semi-persistent Scheduling 469 15.5 MIMO and Dedicated Reference Signals 471 15.6 LTE TDD Performance 472 15.6.1 Link Performance 473 15.6.2 Link Budget and Coverage for the TDD System 473 15.6.3 System Level Performance 477 15.7 Evolution of LTE TDD 483 15.8 LTE TDD Summary 484 References 484 16 LTE-Advanced 487 Mieszko Chmiel, Mihai Enescu, Harri Holma, Tommi Koivisto, Jari Lindholm, Timo Lunttila, Klaus Pedersen, Peter Skov, Timo Roman, Antti Toskala and Yuyu Yan 16.1 Introduction 487 16.2 LTE-Advanced and IMT-Advanced 487 16.3 Requirements 488 16.3.1 Backwards Compatibility 488 16.4 3GPP LTE-Advanced Study Phase 489 16.5 Carrier Aggregation 489 16.5.1 Impact of the Carrier Aggregation for the Higher Layer Protocol and Architecture 492 16.5.2 Physical Layer Details of the Carrier Aggregation 493 16.5.3 Changes in the Physical Layer Uplink due to Carrier Aggregation 493 16.5.4 Changes in the Physical Layer Downlink due to Carrier Aggregation 494 16.5.5 Carrier Aggregation and Mobility 494 16.5.6 Carrier Aggregation Performance 495 16.6 Downlink Multi-antenna Enhancements 496 16.6.1 Reference Symbol Structure in the Downlink 496 16.6.2 Codebook Design 499 16.6.3 System Performance of Downlink Multi-antenna Enhancements 501 16.7 Uplink Multi-antenna Techniques 502 16.7.1 Uplink Multi-antenna Reference Signal Structure 503 16.7.2 Uplink MIMO for PUSCH 503 16.7.3 Uplink MIMO for Control Channels 504 16.7.4 Uplink Multi-user MIMO 505 16.7.5 System Performance of Uplink Multi-antenna Enhancements 505 16.8 Heterogeneous Networks 506 16.9 Relays 508 16.9.1 Architecture (Design Principles of Release 10 Relays) 508 16.9.2 DeNB - RN Link Design 510 16.9.3 Relay Deployment 511 16.10 Release 11 Outlook 512 16.11 Conclusions 513 References 513 17 HSPA Evolution 515 Harri Holma, Karri Ranta-aho and Antti Toskala 17.1 Introduction 515 17.2 Discontinuous Transmission and Reception (DTX/DRX) 515 17.3 Circuit Switched Voice on HSPA 517 17.4 Enhanced FACH and RACH 520 17.5 Downlink MIMO and 64QAM 521 17.5.1 MIMO Workaround Solutions 523 17.6 Dual Cell HSDPA and HSUPA 524 17.7 Multicarrier and Multiband HSDPA 526 17.8 Uplink 16QAM 527 17.9 Terminal Categories 528 17.10 Layer 2 Optimization 529 17.11 Single Frequency Network (SFN) MBMS 531 17.12 Architecture Evolution 531 17.13 Summary 533 References 535 Index 537