LTE, LTE-Advanced and WiMAX (eBook, ePUB)
Towards IMT-Advanced Networks
Alle Infos zum eBook verschenken
LTE, LTE-Advanced and WiMAX (eBook, ePUB)
Towards IMT-Advanced Networks
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
A concise introduction to IMT-Advanced Systems, including LTE-Advanced and WiMAX There exists a strong demand for fully extending emerging Internet services, including collaborative applications and social networking, to the mobile and wireless domain. Delivering such services can be possible only through realizing broadband in the wireless. Two candidate technologies are currently competing in fulfilling the requirements for wireless broadband networks, WiMAX and LTE. At the moment, LTE and its future evolution LTE-Advanced are already gaining ground in terms of vendor and operator support.…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 8.6MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 352
- Erscheinungstermin: 27. Oktober 2011
- Englisch
- ISBN-13: 9781119971467
- Artikelnr.: 37353754
- Verlag: John Wiley & Sons
- Seitenzahl: 352
- Erscheinungstermin: 27. Oktober 2011
- Englisch
- ISBN-13: 9781119971467
- Artikelnr.: 37353754
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Preface xvii
Acknowledgements xix
List of Abbreviations xxi
1 Introduction 1
1.1 Evolution of Wireless Networks 3
1.2 Why IMT-Advanced 5
1.3 The ITU-R Requirements for IMT-Advanced Networks 6
1.3.1 Cell Spectral Efficiency 10
1.3.2 Peak Spectral Efficiency 10
1.3.3 Bandwidth 10
1.3.4 Cell Edge User Spectral Efficiency 10
1.3.5 Latency 10
1.3.6 Rates per Mobility Class 11
1.3.7 Handover Interruption Time 11
1.3.8 VoIP Capacity 12
1.3.9 Spectrum 13
1.4 IMT-Advanced Networks 13
1.4.1 LTE-Advanced 13
1.4.2 IEEE 802.16m 14
1.5 Book Overview 15
References 16
2 Enabling Technologies for IMT-Advanced Networks 19
2.1 Multicarrier Modulation and Multiple Access 20
2.1.1 OFDM 20
2.1.2 OFDMA 22
2.1.3 SC-FDMA 22
2.2 Multiuser Diversity and Scheduling 23
2.3 Adaptive Coding and Modulation 23
2.4 Frequency Reuse 24
2.5 Wideband Transmissions 25
2.6 Multiple Antenna Techniques 27
2.7 Relaying 29
2.8 Femtocells 30
2.9 Coordinated Multi-Point (CoMP) Transmission 33
2.9.1 Interference Cancellation 34
2.9.2 Single Point Feedback/Single Point Reception 35
2.9.3 Multichannel Feedback/Single Point Reception 35
2.9.4 Multichannel Feedback/Multipoint Reception 35
2.9.5 Inter-Cell MIMO 35
2.10 Power Management 36
2.11 Inter-Technology Handovers 36
References 37
Part I WIMAX 39
3 WiMAX Networks 41
3.1 IEEE 802.16-2009 41
3.1.1 IEEE 802.16-2009 Air Interfaces 43
3.1.2 Protocol Reference Model 44
3.2 IEEE 802.16m 45
3.2.1 IEEE 802.16m Air Interface 48
3.2.2 System Reference Model 48
3.3 Summary of Functionalities 48
3.3.1 Frame Structure 48
3.3.2 Network Entry 50
3.3.3 QoS and Bandwidth Reservation 51
3.3.4 Mobility Management 53
3.3.5 Security 56
4 Frame Structure, Addressing and Identification 59
4.1 Frame Structure in IEEE 802.16-2009 59
4.1.1 TDD Frame Structure 60
4.1.2 FDD/HD-FDD Frame Structure 62
4.2 Frame Structure in IEEE 802.16j 62
4.2.1 Frame Structure in Transparent Relaying 63
4.2.2 Frame Structure in Non-Transparent Relaying 65
4.3 Frame Structure in IEEE 802.16m 69
4.3.1 Basic Frame Structure 69
4.3.2 Frame Structure Supporting IEEE 802.16-2009 Frames 70
4.4 Addressing and Connections Identification 71
4.4.1 Logical identifiers in IEEE 802.16-2009 71
4.4.2 Logical identifiers in IEEE 802.16j-2009 72
4.4.3 Logical identifiers in IEEE 802.16m 73
5 Network Entry, Initialization and Ranging 75
5.1 Network Entry in IEEE 802.16-2009 75
5.1.1 Initial Ranging 77
5.1.2 Periodic Ranging 78
5.1.3 Periodic Ranging in OFDM 79
5.1.4 Periodic Ranging in OFDMA 79
5.2 Network Entry in IEEE 802.16j-2009 80
5.2.1 Initial Ranging 82
5.2.2 Periodic Ranging 83
5.3 Network Entry in IEEE 802.16m 84
6 Quality of Service and Bandwidth Reservation 87
6.1 QoS in IEEE 802.16-2009 88
6.1.1 QoS Performance Measures 88
6.1.2 Classification 89
6.1.3 Signaling Bandwidth Requests and Grants 93
6.1.4 Bandwidth Allocation and Traffic Handling 97
6.2 Quality of Service in IEEE 802.16j 99
6.2.1 Classification 99
6.2.2 Signaling Bandwidth Requests and Grants 99
6.2.3 Bandwidth Allocation and Traffic Handling 103
6.3 QoS in IEEE 802.16m 104
6.3.1 QoS Parameters 104
6.3.2 Classification 104
6.3.3 Bandwidth Request and Grant 104
6.3.4 Bandwidth Allocation and Traffic Handling 105
7 Mobility Management 107
7.1 Mobility Management in IEEE 802.16-2009 107
7.1.1 Acquiring Network Topology 109
7.1.2 Association Procedures 109
7.1.3 The Handover Process 110
7.1.4 Optional Handover Modes 112
7.2 Mobility Management in IEEE 802.16j-2009 114
7.2.1 MR-BS and RS Behavior during MS Handover 114
7.2.2 Mobile RS Handover 115
7.3 Mobility Management in IEEE 802.16m 117
7.3.1 ABS to ABS Handovers 117
7.3.2 Mixed Handover Types 118
7.3.3 Inter-RAT Handovers 119
7.3.4 Handovers in Relay, Femtocells and Multicarrier IEEE 802.16m Networks
119
8 Security 121
8.1 Security in IEEE 802.16-2009 121
8.1.1 Security Associations 122
8.1.2 Authentication 122
8.1.3 Encryption 123
8.2 Security in IEEE 802.16j-2009 124
8.2.1 Security Zones 125
8.3 Security in IEEE 802.16m 125
Part II LTE AND LTE-ADVANCED NETWORKS 127
9 Overview of LTE and LTE-Advanced Networks 129
9.1 Overview of LTE Networks 129
9.1.1 The Radio Protocol Architecture 131
9.1.2 The Interfaces 132
9.1.3 Support for Home eNBs (Femtocells) 133
9.1.4 Air Interface 134
9.2 Overview of Part II 135
9.2.1 Frame Structure 135
9.2.2 UE States and State Transitions 136
9.2.3 Quality of Service and Bandwidth Reservation 137
9.2.4 Mobility Management 139
9.2.5 Security 142
References 145
10 Frame-Structure and Node Identification 147
10.1 Frame-Structure in LTE 147
10.1.1 Resource Block Structure 149
10.2 Frame-Structure in LTE-Advanced 151
10.3 LTE Identification, Naming and Addressing 151
10.3.1 Identification 152
10.3.2 Addressing 153
11 UE States and State Transitions 161
11.1 Overview of a UE's State Transitions 161
11.2 IDLE Processes 162
11.2.1 PLMN Selection 162
11.2.2 Cell Selection and Reselection 163
11.2.3 Location Registration 164
11.2.4 Support for Manual CSG ID Selection 164
11.3 Acquiring System Information 164
11.4 Connection Establishment and Control 165
11.4.1 Random Access Procedure 165
11.4.2 Connection Establishment 167
11.4.3 Connection Reconfiguration 168
11.4.4 Connection Re-establishment 169
11.4.5 Connection Release 169
11.4.6 Leaving the RRC_CONNECTED State 170
11.5 Mapping between AS and NAS States 170
12 Quality of Service and Bandwidth Reservation 173
12.1 QoS Performance Measures 173
12.2 Classification 174
12.3 Signaling for Bandwidth Requests and Grants 175
12.3.1 Dedicated Bearer 176
12.3.2 Default Bearer 179
12.4 Bandwidth Allocation and Traffic Handling 180
12.4.1 Scheduling 180
12.4.2 Hybrid Automatic Repeat Request 182
12.5 QoS in LTE-Advanced 184
12.5.1 Carrier Aggregation 184
12.5.2 Coordinated Multipoint Transmission/Reception (CoMP) 184
12.5.3 Relaying in LTE-Advanced 185
13 Mobility Management 189
13.1 Overview 189
13.2 Drivers and Limitations for Mobility Control 190
13.3 Mobility Management and UE States 192
13.3.1 IDLE State Mobility Management 192
13.3.2 CONNECTED State Mobility Management 193
13.4 Considerations for Inter RAT Mobility 195
13.4.1 Cell Reselection 196
13.4.2 Handover 196
13.5 CSG and Hybrid HeNB Cells 196
13.6 Mobility Management Signaling 198
13.6.1 X2 Mobility Management 198
13.6.2 S1 Mobility Management 201
14 Security 203
14.1 Design Rationale 203
14.2 LTE Security Architecture 204
14.3 EPS Key Hierarchy 206
14.4 State Transitions and Mobility 208
14.5 Procedures between UE and EPC Elements 209
14.5.1 EPS Authentication and Key Agreement (AKA) 209
14.5.2 Distribution of Authentication Data from HSS to Serving Network 210
14.5.3 User Identification by a Permanent Identity 210
Part III COMPARISON 211
15 A Requirements Comparison 213
15.1 Evolution of the IMT-Advanced Standards 213
15.2 Comparing Spectral Efficiency 216
15.2.1 OFDMA Implementation 216
15.2.2 MIMO Implementation 217
15.2.3 Spectrum Flexibility 219
15.3 Comparing Relay Adoption 222
15.4 Comparing Network Architectures 223
15.4.1 ASN/AN (E-UTRAN) and the MME and the S-GW 223
15.4.2 CSN/PDN-GW 225
16 Coexistence and Inter-Technology Handovers 227
16.1 Intersystem Interference 227
16.1.1 Types of Intersystem Interference 228
16.2 Inter-Technology Access 230
16.2.1 Approaches to Inter-Technology Mobility 230
16.2.2 Examples of Inter-Technology Access 231
References 235
17 Supporting Quality of Service 237
17.1 Scheduling in WiMAX 237
17.1.1 Homogeneous Algorithms 239
17.1.2 Hybrid Algorithms 240
17.1.3 Opportunistic Algorithms 241
17.2 Scheduling in LTE and LTE-Advanced 243
17.2.1 Scheduling the Uplink 243
17.2.2 Scheduling the Downlink 245
17.3 Quantitative Comparison between LTE and WiMAX 246
17.3.1 VoIP Scheduling in LTE and WiMAX 246
17.3.2 Power Consumption in LTE and WiMAX Base Stations 247
17.3.3 Comparing OFDMA and SC-FDMA 247
References 247
18 The Market View 251
18.1 Towards 4G Networks 252
18.2 IMT-Advanced Market Outlook 253
18.2.1 Spectrum Allocation 254
18.2.2 Small Cells 255
18.2.3 The WiFi Spread 255
18.2.4 The Backhaul Bottleneck 256
18.2.5 Readiness for 4G 256
18.3 The Road Ahead 257
References 257
19 The Road Ahead 259
19.1 Network Capacity 260
19.2 Access Heterogeneity 261
19.3 Cognitive Radio and Dynamic Spectrum 261
19.4 Network Intelligence 262
19.5 Access Network Architecture 263
19.6 Radio Resource Management 263
19.7 Green Wireless Access 265
References 266
Index 269
Preface xvii
Acknowledgements xix
List of Abbreviations xxi
1 Introduction 1
1.1 Evolution of Wireless Networks 3
1.2 Why IMT-Advanced 5
1.3 The ITU-R Requirements for IMT-Advanced Networks 6
1.3.1 Cell Spectral Efficiency 10
1.3.2 Peak Spectral Efficiency 10
1.3.3 Bandwidth 10
1.3.4 Cell Edge User Spectral Efficiency 10
1.3.5 Latency 10
1.3.6 Rates per Mobility Class 11
1.3.7 Handover Interruption Time 11
1.3.8 VoIP Capacity 12
1.3.9 Spectrum 13
1.4 IMT-Advanced Networks 13
1.4.1 LTE-Advanced 13
1.4.2 IEEE 802.16m 14
1.5 Book Overview 15
References 16
2 Enabling Technologies for IMT-Advanced Networks 19
2.1 Multicarrier Modulation and Multiple Access 20
2.1.1 OFDM 20
2.1.2 OFDMA 22
2.1.3 SC-FDMA 22
2.2 Multiuser Diversity and Scheduling 23
2.3 Adaptive Coding and Modulation 23
2.4 Frequency Reuse 24
2.5 Wideband Transmissions 25
2.6 Multiple Antenna Techniques 27
2.7 Relaying 29
2.8 Femtocells 30
2.9 Coordinated Multi-Point (CoMP) Transmission 33
2.9.1 Interference Cancellation 34
2.9.2 Single Point Feedback/Single Point Reception 35
2.9.3 Multichannel Feedback/Single Point Reception 35
2.9.4 Multichannel Feedback/Multipoint Reception 35
2.9.5 Inter-Cell MIMO 35
2.10 Power Management 36
2.11 Inter-Technology Handovers 36
References 37
Part I WIMAX 39
3 WiMAX Networks 41
3.1 IEEE 802.16-2009 41
3.1.1 IEEE 802.16-2009 Air Interfaces 43
3.1.2 Protocol Reference Model 44
3.2 IEEE 802.16m 45
3.2.1 IEEE 802.16m Air Interface 48
3.2.2 System Reference Model 48
3.3 Summary of Functionalities 48
3.3.1 Frame Structure 48
3.3.2 Network Entry 50
3.3.3 QoS and Bandwidth Reservation 51
3.3.4 Mobility Management 53
3.3.5 Security 56
4 Frame Structure, Addressing and Identification 59
4.1 Frame Structure in IEEE 802.16-2009 59
4.1.1 TDD Frame Structure 60
4.1.2 FDD/HD-FDD Frame Structure 62
4.2 Frame Structure in IEEE 802.16j 62
4.2.1 Frame Structure in Transparent Relaying 63
4.2.2 Frame Structure in Non-Transparent Relaying 65
4.3 Frame Structure in IEEE 802.16m 69
4.3.1 Basic Frame Structure 69
4.3.2 Frame Structure Supporting IEEE 802.16-2009 Frames 70
4.4 Addressing and Connections Identification 71
4.4.1 Logical identifiers in IEEE 802.16-2009 71
4.4.2 Logical identifiers in IEEE 802.16j-2009 72
4.4.3 Logical identifiers in IEEE 802.16m 73
5 Network Entry, Initialization and Ranging 75
5.1 Network Entry in IEEE 802.16-2009 75
5.1.1 Initial Ranging 77
5.1.2 Periodic Ranging 78
5.1.3 Periodic Ranging in OFDM 79
5.1.4 Periodic Ranging in OFDMA 79
5.2 Network Entry in IEEE 802.16j-2009 80
5.2.1 Initial Ranging 82
5.2.2 Periodic Ranging 83
5.3 Network Entry in IEEE 802.16m 84
6 Quality of Service and Bandwidth Reservation 87
6.1 QoS in IEEE 802.16-2009 88
6.1.1 QoS Performance Measures 88
6.1.2 Classification 89
6.1.3 Signaling Bandwidth Requests and Grants 93
6.1.4 Bandwidth Allocation and Traffic Handling 97
6.2 Quality of Service in IEEE 802.16j 99
6.2.1 Classification 99
6.2.2 Signaling Bandwidth Requests and Grants 99
6.2.3 Bandwidth Allocation and Traffic Handling 103
6.3 QoS in IEEE 802.16m 104
6.3.1 QoS Parameters 104
6.3.2 Classification 104
6.3.3 Bandwidth Request and Grant 104
6.3.4 Bandwidth Allocation and Traffic Handling 105
7 Mobility Management 107
7.1 Mobility Management in IEEE 802.16-2009 107
7.1.1 Acquiring Network Topology 109
7.1.2 Association Procedures 109
7.1.3 The Handover Process 110
7.1.4 Optional Handover Modes 112
7.2 Mobility Management in IEEE 802.16j-2009 114
7.2.1 MR-BS and RS Behavior during MS Handover 114
7.2.2 Mobile RS Handover 115
7.3 Mobility Management in IEEE 802.16m 117
7.3.1 ABS to ABS Handovers 117
7.3.2 Mixed Handover Types 118
7.3.3 Inter-RAT Handovers 119
7.3.4 Handovers in Relay, Femtocells and Multicarrier IEEE 802.16m Networks
119
8 Security 121
8.1 Security in IEEE 802.16-2009 121
8.1.1 Security Associations 122
8.1.2 Authentication 122
8.1.3 Encryption 123
8.2 Security in IEEE 802.16j-2009 124
8.2.1 Security Zones 125
8.3 Security in IEEE 802.16m 125
Part II LTE AND LTE-ADVANCED NETWORKS 127
9 Overview of LTE and LTE-Advanced Networks 129
9.1 Overview of LTE Networks 129
9.1.1 The Radio Protocol Architecture 131
9.1.2 The Interfaces 132
9.1.3 Support for Home eNBs (Femtocells) 133
9.1.4 Air Interface 134
9.2 Overview of Part II 135
9.2.1 Frame Structure 135
9.2.2 UE States and State Transitions 136
9.2.3 Quality of Service and Bandwidth Reservation 137
9.2.4 Mobility Management 139
9.2.5 Security 142
References 145
10 Frame-Structure and Node Identification 147
10.1 Frame-Structure in LTE 147
10.1.1 Resource Block Structure 149
10.2 Frame-Structure in LTE-Advanced 151
10.3 LTE Identification, Naming and Addressing 151
10.3.1 Identification 152
10.3.2 Addressing 153
11 UE States and State Transitions 161
11.1 Overview of a UE's State Transitions 161
11.2 IDLE Processes 162
11.2.1 PLMN Selection 162
11.2.2 Cell Selection and Reselection 163
11.2.3 Location Registration 164
11.2.4 Support for Manual CSG ID Selection 164
11.3 Acquiring System Information 164
11.4 Connection Establishment and Control 165
11.4.1 Random Access Procedure 165
11.4.2 Connection Establishment 167
11.4.3 Connection Reconfiguration 168
11.4.4 Connection Re-establishment 169
11.4.5 Connection Release 169
11.4.6 Leaving the RRC_CONNECTED State 170
11.5 Mapping between AS and NAS States 170
12 Quality of Service and Bandwidth Reservation 173
12.1 QoS Performance Measures 173
12.2 Classification 174
12.3 Signaling for Bandwidth Requests and Grants 175
12.3.1 Dedicated Bearer 176
12.3.2 Default Bearer 179
12.4 Bandwidth Allocation and Traffic Handling 180
12.4.1 Scheduling 180
12.4.2 Hybrid Automatic Repeat Request 182
12.5 QoS in LTE-Advanced 184
12.5.1 Carrier Aggregation 184
12.5.2 Coordinated Multipoint Transmission/Reception (CoMP) 184
12.5.3 Relaying in LTE-Advanced 185
13 Mobility Management 189
13.1 Overview 189
13.2 Drivers and Limitations for Mobility Control 190
13.3 Mobility Management and UE States 192
13.3.1 IDLE State Mobility Management 192
13.3.2 CONNECTED State Mobility Management 193
13.4 Considerations for Inter RAT Mobility 195
13.4.1 Cell Reselection 196
13.4.2 Handover 196
13.5 CSG and Hybrid HeNB Cells 196
13.6 Mobility Management Signaling 198
13.6.1 X2 Mobility Management 198
13.6.2 S1 Mobility Management 201
14 Security 203
14.1 Design Rationale 203
14.2 LTE Security Architecture 204
14.3 EPS Key Hierarchy 206
14.4 State Transitions and Mobility 208
14.5 Procedures between UE and EPC Elements 209
14.5.1 EPS Authentication and Key Agreement (AKA) 209
14.5.2 Distribution of Authentication Data from HSS to Serving Network 210
14.5.3 User Identification by a Permanent Identity 210
Part III COMPARISON 211
15 A Requirements Comparison 213
15.1 Evolution of the IMT-Advanced Standards 213
15.2 Comparing Spectral Efficiency 216
15.2.1 OFDMA Implementation 216
15.2.2 MIMO Implementation 217
15.2.3 Spectrum Flexibility 219
15.3 Comparing Relay Adoption 222
15.4 Comparing Network Architectures 223
15.4.1 ASN/AN (E-UTRAN) and the MME and the S-GW 223
15.4.2 CSN/PDN-GW 225
16 Coexistence and Inter-Technology Handovers 227
16.1 Intersystem Interference 227
16.1.1 Types of Intersystem Interference 228
16.2 Inter-Technology Access 230
16.2.1 Approaches to Inter-Technology Mobility 230
16.2.2 Examples of Inter-Technology Access 231
References 235
17 Supporting Quality of Service 237
17.1 Scheduling in WiMAX 237
17.1.1 Homogeneous Algorithms 239
17.1.2 Hybrid Algorithms 240
17.1.3 Opportunistic Algorithms 241
17.2 Scheduling in LTE and LTE-Advanced 243
17.2.1 Scheduling the Uplink 243
17.2.2 Scheduling the Downlink 245
17.3 Quantitative Comparison between LTE and WiMAX 246
17.3.1 VoIP Scheduling in LTE and WiMAX 246
17.3.2 Power Consumption in LTE and WiMAX Base Stations 247
17.3.3 Comparing OFDMA and SC-FDMA 247
References 247
18 The Market View 251
18.1 Towards 4G Networks 252
18.2 IMT-Advanced Market Outlook 253
18.2.1 Spectrum Allocation 254
18.2.2 Small Cells 255
18.2.3 The WiFi Spread 255
18.2.4 The Backhaul Bottleneck 256
18.2.5 Readiness for 4G 256
18.3 The Road Ahead 257
References 257
19 The Road Ahead 259
19.1 Network Capacity 260
19.2 Access Heterogeneity 261
19.3 Cognitive Radio and Dynamic Spectrum 261
19.4 Network Intelligence 262
19.5 Access Network Architecture 263
19.6 Radio Resource Management 263
19.7 Green Wireless Access 265
References 266
Index 269