Machine Intelligence, Big Data Analytics, and IoT in Image Processing (eBook, ePUB)
Practical Applications
Redaktion: Kumar, Ashok; Hu, Yu-Chen; Garg, Lalit; Galindo, Jose A.; Bhushan, Megha
Alle Infos zum eBook verschenken
Machine Intelligence, Big Data Analytics, and IoT in Image Processing (eBook, ePUB)
Practical Applications
Redaktion: Kumar, Ashok; Hu, Yu-Chen; Garg, Lalit; Galindo, Jose A.; Bhushan, Megha
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
MACHINE INTELLIGENCE, BIG DATA ANALYTICS, AND IoT IN IMAGE PROCESSING Discusses both theoretical and practical aspects of how to harness advanced technologies to develop practical applications such as drone-based surveillance, smart transportation, healthcare, farming solutions, and robotics used in automation. The concepts of machine intelligence, big data analytics, and the Internet of Things (IoT) continue to improve our lives through various cutting-edge applications such as disease detection in real-time, crop yield prediction, smart parking, and so forth. The transformative effects of…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 14.43MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 512
- Erscheinungstermin: 14. Februar 2023
- Englisch
- ISBN-13: 9781119865490
- Artikelnr.: 67513926
- Verlag: John Wiley & Sons
- Seitenzahl: 512
- Erscheinungstermin: 14. Februar 2023
- Englisch
- ISBN-13: 9781119865490
- Artikelnr.: 67513926
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Part I: Demystifying Smart Healthcare 1
1 Deep Learning Techniques Using Transfer Learning for Classification of
Alzheimer's Disease 3
Monika Sethi, Sachin Ahuja and Puneet Bawa
1.1 Introduction 4
1.2 Transfer Learning Techniques 6
1.3 AD Classification Using Conventional Training Methods 9
1.4 AD Classification Using Transfer Learning 12
1.5 Conclusion 16
References 16
2 Medical Image Analysis of Lung Cancer CT Scans Using Deep Learning with
Swarm Optimization Techniques 23
Debnath Bhattacharyya, E. Stephen Neal Joshua and N. Thirupathi Rao
2.1 Introduction 24
2.2 The Major Contributions of the Proposed Model 26
2.3 Related Works 28
2.4 Problem Statement 32
2.5 Proposed Model 33
2.5.1 Swarm Optimization in Lung Cancer Medical Image Analysis 33
2.5.2 Deep Learning with PSO 34
2.5.3 Proposed CNN Architectures 35
2.6 Dataset Description 37
2.7 Results and Discussions 39
2.7.1 Parameters for Performance Evaluation 39
2.8 Conclusion 47
References 48
3 Liver Cancer Classification With Using Gray-Level Co-Occurrence Matrix
Using Deep Learning Techniques 51
Debnath Bhattacharyya, E. Stephen Neal Joshua and N. Thirupathi Rao
3.1 Introduction 52
3.1.1 Liver Roles in Human Body 53
3.1.2 Liver Diseases 53
3.1.3 Types of Liver Tumors 55
3.1.3.1 Benign Tumors 55
3.1.3.2 Malignant Tumors 57
3.1.4 Characteristics of a Medical Imaging Procedure 58
3.1.5 Problems Related to Liver Cancer Classification 60
3.1.6 Purpose of the Systematic Study 61
3.2 Related Works 62
3.3 Proposed Methodology 66
3.3.1 Gaussian Mixture Model 68
3.3.2 Dataset Description 69
3.3.3 Performance Metrics 70
3.3.3.1 Accuracy Measures 70
3.3.3.2 Key Findings 74
3.3.3.3 Key Issues Addressed 75
3.4 Conclusion 77
References 77
4 Transforming the Technologies for Resilient and Digital Future During
COVID-19 Pandemic 81
Garima Kohli and Kumar Gourav
4.1 Introduction 82
4.2 Digital Technologies Used 84
4.2.1 Artificial Intelligence 85
4.2.2 Internet of Things 85
4.2.3 Telehealth/Telemedicine 87
4.2.4 Cloud Computing 87
4.2.5 Blockchain 88
4.2.6 5g 89
4.3 Challenges in Transforming Digital Technology 90
4.3.1 Increasing Digitalization 91
4.3.2 Work From Home Culture 91
4.3.3 Workplace Monitoring and Techno Stress 91
4.3.4 Online Fraud 92
4.3.5 Accessing Internet 92
4.3.6 Internet Shutdowns 92
4.3.7 Digital Payments 92
4.3.8 Privacy and Surveillance 93
4.4 Implications for Research 93
4.5 Conclusion 94
References 95
Part II: Plant Pathology 101
5 Plant Pathology Detection Using Deep Learning 103
Sangeeta V., Appala S. Muttipati and Brahmaji Godi
5.1 Introduction 104
5.2 Plant Leaf Disease 105
5.3 Background Knowledge 109
5.4 Architecture of ResNet 512 V 2 111
5.4.1 Working of Residual Network 112
5.5 Methodology 113
5.5.1 Image Resizing 113
5.5.2 Data Augmentation 113
5.5.2.1 Types of Data Augmentation 114
5.5.3 Data Normalization 114
5.5.4 Data Splitting 116
5.6 Result Analysis 116
5.6.1 Data Collection 117
5.6.2 Feature Extractions 117
5.6.3 Plant Leaf Disease Detection 117
5.7 Conclusion 119
References 120
6 Smart Irrigation and Cultivation Recommendation System for Precision
Agriculture Driven by IoT 123
N. Marline Joys Kumari, N. Thirupathi Rao and Debnath Bhattacharyya
6.1 Introduction 124
6.1.1 Background of the Problem 127
6.1.1.1 Need of Water Management 127
6.1.1.2 Importance of Precision Agriculture 127
6.1.1.3 Internet of Things 128
6.1.1.4 Application of IoT in Machine Learning and Deep Learning 129
6.2 Related Works 131
6.3 Challenges of IoT in Smart Irrigation 133
6.4 Farmers' Challenges in the Current Situation 135
6.5 Data Collection in Precision Agriculture 136
6.5.1 Algorithm 136
6.5.1.1 Environmental Consideration on Stage Production of Crop 140
6.5.2 Implementation Measures 141
6.5.2.1 Analysis of Relevant Vectors 141
6.5.2.2 Mean Square Error 141
6.5.2.3 Potential of IoT in Precision Agriculture 141
6.5.3 Architecture of the Proposed Model 143
6.6 Conclusion 147
References 147
7 Machine Learning-Based Hybrid Model for Wheat Yield Prediction 151
Haneet Kour, Vaishali Pandith, Jatinder Manhas and Vinod Sharma
7.1 Introduction 152
7.2 Related Work 153
7.3 Materials and Methods 155
7.3.1 Methodology for the Current Work 155
7.3.1.1 Data Collection for Wheat Crop 155
7.3.1.2 Data Pre-Processing 156
7.3.1.3 Implementation of the Proposed Hybrid Model 157
7.3.2 Techniques Used for Feature Selection 159
7.3.2.1 ReliefF Algorithm 159
7.3.2.2 Genetic Algorithm 161
7.3.3 Implementation of Machine Learning Techniques for Wheat Yield
Prediction 162
7.3.3.1 K-Nearest Neighbor 162
7.3.3.2 Artificial Neural Network 163
7.3.3.3 Logistic Regression 164
7.3.3.4 Naïve Bayes 164
7.3.3.5 Support Vector Machine 165
7.3.3.6 Linear Discriminant Analysis 166
7.4 Experimental Result and Analysis 167
7.5 Conclusion 173
Acknowledgment 173
References 174
8 A Status Quo of Machine Learning Algorithms in Smart Agricultural Systems
Employing IoT-Based WSN: Trends, Challenges and Futuristic Competences 177
Abhishek Bhola, Suraj Srivastava, Ajit Noonia, Bhisham Sharma and Sushil
Kumar Narang
8.1 Introduction 178
8.2 Types of Wireless Sensor for Smart Agriculture 179
8.3 Application of Machine Learning Algorithms for Smart Decision Making in
Smart Agriculture 179
8.4 ml and WSN-Based Techniques for Smart Agriculture 185
8.5 Future Scope in Smart Agriculture 188
8.6 Conclusion 190
References 190
Part III: Smart City and Villages 197
9 Impact of Data Pre-Processing in Information Retrieval for Data Analytics
199
Huma Naz, Sachin Ahuja, Rahul Nijhawan and Neelu Jyothi Ahuja
9.1 Introduction 200
9.1.1 Tasks Involved in Data Pre-Processing 200
9.2 Related Work 202
9.3 Experimental Setup and Methodology 205
9.3.1 Methodology 205
9.3.2 Application of Various Data Pre-Processing Tasks on Datasets 206
9.3.3 Applied Techniques 207
9.3.3.1 Decision Tree 207
9.3.3.2 Naive Bayes 207
9.3.3.3 Artificial Neural Network 208
9.3.4 Proposed Work 208
9.3.4.1 PIMA Diabetes Dataset (PID) 208
9.3.5 Cleveland Heart Disease Dataset 211
9.3.6 Framingham Heart Study 215
9.3.7 Diabetic Dataset 217
9.4 Experimental Result and Discussion 220
9.5 Conclusion and Future Work 222
References 222
10 Cloud Computing Security, Risk, and Challenges: A Detailed Analysis of
Preventive Measures and Applications 225
Anurag Sinha, N. K. Singh, Ayushman Srivastava, Sagorika Sen and Samarth
Sinha
10.1 Introduction 226
10.2 Background 228
10.2.1 History of Cloud Computing 228
10.2.1.1 Software-as-a-Service Model 230
10.2.1.2 Infrastructure-as-a-Service Model 230
10.2.1.3 Platform-as-a-Service Model 232
10.2.2 Types of Cloud Computing 232
10.2.3 Cloud Service Model 232
10.2.4 Characteristics of Cloud Computing 234
10.2.5 Advantages of Cloud Computing 234
10.2.6 Challenges in Cloud Computing 235
10.2.7 Cloud Security 236
10.2.7.1 Foundation Security 236
10.2.7.2 SaaS and PaaS Host Security 237
10.2.7.3 Virtual Server Security 237
10.2.7.4 Foundation Security: The Application Level 238
10.2.7.5 Supplier Data and Its Security 238
10.2.7.6 Need of Security in Cloud 239
10.2.8 Cloud Computing Applications 239
10.3 Literature Review 241
10.4 Cloud Computing Challenges and Its Solution 242
10.4.1 Solution and Practices for Cloud Challenges 246
10.5 Cloud Computing Security Issues and Its Preventive Measures 248
10.5.1 General Security Threats in Cloud 249
10.5.2 Preventive Measures 254
10.6 Cloud Data Protection and Security Using Steganography 258
10.6.1 Types of Steganography 259
10.6.2 Data Steganography in Cloud Environment 260
10.6.3 Pixel Value Differencing Method 261
10.7 Related Study 263
10.8 Conclusion 263
References 264
11 Internet of Drone Things: A New Age Invention 269
Prachi Dahiya
11.1 Introduction 269
11.2 Unmanned Aerial Vehicles 271
11.2.1 UAV Features and Working 274
11.2.2 IoDT Architecture 275
11.3 Application Areas 280
11.3.1 Other Application Areas 284
11.4 IoDT Attacks 285
11.4.1 Counter Measures 291
11.5 Fusion of IoDT With Other Technologies 296
11.6 Recent Advancements in IoDT 299
11.7 Conclusion 302
References 303
12 Computer Vision-Oriented Gesture Recognition System for Real-Time ISL
Prediction 305
Mukul Joshi, Gayatri Valluri, Jyoti Rawat and Kriti
12.1 Introduction 305
12.2 Literature Review 307
12.3 System Architecture 309
12.3.1 Model Development Phase 309
12.3.2 Development Environment Phase 311
12.4 Methodology 312
12.4.1 Image Pre-Processing Phase 312
12.4.2 Model Building Phase 313
12.5 Implementation and Results 314
12.5.1 Performance 314
12.5.2 Confusion Matrix 318
12.6 Conclusion and Future Scope 318
References 319
13 Recent Advances in Intelligent Transportation Systems in India:
Analysis, Applications, Challenges, and Future Work 323
Elamurugan Balasundaram, Cailassame Nedunchezhian, Mathiazhagan Arumugam
and Vinoth Asaikannu
13.1 Introduction 324
13.2 A Primer on ITS 325
13.3 The ITS Stages 326
13.4 Functions of ITS 327
13.5 ITS Advantages 328
13.6 ITS Applications 329
13.7 ITS Across the World 331
13.8 India's Status of ITS 333
13.9 Suggestions for Improving India's ITS Position 334
13.10 Conclusion 335
References 335
14 Evolutionary Approaches in Navigation Systems for Road Transportation
System 341
Noopur Tyagi, Jaiteg Singh and Saravjeet Singh
14.1 Introduction 342
14.1.1 Navigation System 343
14.1.2 Genetic Algorithm 347
14.1.3 Differential Evolution 348
14.2 Related Studies 349
14.2.1 Related Studies of Evolutionary Algorithms 351
14.3 Navigation Based on Evolutionary Algorithm 352
14.3.1 Operators and Terms Used in Evolutionary Algorithms 353
14.3.2 Operator and Terms Used in Evolutionary Algorithm 357
14.4 Meta-Heuristic Algorithms for Navigation 359
14.4.1 Drawbacks of DE 362
14.5 Conclusion 362
References 363
15 IoT-Based Smart Parking System for Indian Smart Cities 369
E. Fantin Irudaya Raj, M. Appadurai, M. Chithamabara Thanu and E. Francy
Irudaya Rani
15.1 Introduction 370
15.2 Indian Smart Cities Mission 371
15.3 Vehicle Parking and Its Requirements in a Smart City Configuration 373
15.4 Technologies Incorporated in a Vehicle Parking System in Smart Cities
375
15.5 Sensors for Vehicle Parking System 383
15.5.1 Active Sensors 384
15.5.2 Passive Sensors 386
15.6 IoT-Based Vehicle Parking System for Indian Smart Cities 387
15.6.1 Guidance to the Customers Through Smart Devices 389
15.6.2 Smart Parking Reservation System 391
15.7 Advantages of IoT-Based Vehicle Parking System 392
15.8 Conclusion 392
References 393
16 Security of Smart Home Solution Based on Secure Piggybacked Key Exchange
Mechanism 399
Jatin Arora and Saravjeet Singh
16.1 Introduction 400
16.2 IoT Challenges 404
16.3 IoT Vulnerabilities 405
16.4 Layer-Wise Threats in IoT Architecture 406
16.4.1 Sensing Layer Security Issues 407
16.4.2 Network Layer Security Issues 408
16.4.3 Middleware Layer Security Issues 409
16.4.4 Gateways Security Issues 410
16.4.5 Application Layer Security Issues 411
16.5 Attack Prevention Techniques 411
16.5.1 IoT Authentication 412
16.5.2 Session Establishment 413
16.6 Conclusion 414
References 414
17 Machine Learning Models in Prediction of Strength Parameters of
FRP-Wrapped RC Beams 419
Aman Kumar, Harish Chandra Arora, Nishant Raj Kapoor and Ashok Kumar
17.1 Introduction 420
17.1.1 Defining Fiber-Reinforced Polymer 421
17.1.2 Types of FRP Composites 422
17.1.2.1 Carbon Fiber-Reinforced Polymer 422
17.1.2.2 Glass Fiber 423
17.1.2.3 Aramid Fiber 424
17.1.2.4 Basalt Fiber 424
17.2 Strengthening of RC Beams With FRP Systems 425
17.2.1 FRP-to-Concrete Bond 426
17.2.2 Flexural Strengthening of Beams With FRP Composite 427
17.2.3 Shear Strengthening of Beams With FRP Composite 427
17.3 Machine Learning Models 428
17.3.1 Prediction of Bond Strength 430
17.3.2 Estimation of Flexural Strength 434
17.3.3 Estimation of Shear Strength 434
17.4 Conclusion 441
References 441
18 Prediction of Indoor Air Quality Using Artificial Intelligence 447
Nishant Raj Kapoor, Ashok Kumar, Anuj Kumar, Aman Kumar and Harish Chandra
Arora
18.1 Introduction 448
18.2 Indoor Air Quality Parameters 450
18.2.1 Physical Parameters 453
18.2.1.1 Humidity 453
18.2.1.2 Air Changes (Ventilation) 454
18.2.1.3 Air Velocity 454
18.2.1.4 Temperature 454
18.2.2 Particulate Matter 455
18.2.3 Chemical Parameters 456
18.2.3.1 Carbon Dioxide 456
18.2.3.2 Carbon Monoxide 456
18.2.3.3 Nitrogen Dioxide 456
18.2.3.4 Sulphur Dioxide 457
18.2.3.5 Ozone 457
18.2.3.6 Gaseous Ammonia 458
18.2.3.7 Volatile Organic Compounds 458
18.2.4 Biological Parameters 459
18.3 AI in Indoor Air Quality Prediction 459
18.4 Conclusion 464
References 465
Index 471
Part I: Demystifying Smart Healthcare 1
1 Deep Learning Techniques Using Transfer Learning for Classification of
Alzheimer's Disease 3
Monika Sethi, Sachin Ahuja and Puneet Bawa
1.1 Introduction 4
1.2 Transfer Learning Techniques 6
1.3 AD Classification Using Conventional Training Methods 9
1.4 AD Classification Using Transfer Learning 12
1.5 Conclusion 16
References 16
2 Medical Image Analysis of Lung Cancer CT Scans Using Deep Learning with
Swarm Optimization Techniques 23
Debnath Bhattacharyya, E. Stephen Neal Joshua and N. Thirupathi Rao
2.1 Introduction 24
2.2 The Major Contributions of the Proposed Model 26
2.3 Related Works 28
2.4 Problem Statement 32
2.5 Proposed Model 33
2.5.1 Swarm Optimization in Lung Cancer Medical Image Analysis 33
2.5.2 Deep Learning with PSO 34
2.5.3 Proposed CNN Architectures 35
2.6 Dataset Description 37
2.7 Results and Discussions 39
2.7.1 Parameters for Performance Evaluation 39
2.8 Conclusion 47
References 48
3 Liver Cancer Classification With Using Gray-Level Co-Occurrence Matrix
Using Deep Learning Techniques 51
Debnath Bhattacharyya, E. Stephen Neal Joshua and N. Thirupathi Rao
3.1 Introduction 52
3.1.1 Liver Roles in Human Body 53
3.1.2 Liver Diseases 53
3.1.3 Types of Liver Tumors 55
3.1.3.1 Benign Tumors 55
3.1.3.2 Malignant Tumors 57
3.1.4 Characteristics of a Medical Imaging Procedure 58
3.1.5 Problems Related to Liver Cancer Classification 60
3.1.6 Purpose of the Systematic Study 61
3.2 Related Works 62
3.3 Proposed Methodology 66
3.3.1 Gaussian Mixture Model 68
3.3.2 Dataset Description 69
3.3.3 Performance Metrics 70
3.3.3.1 Accuracy Measures 70
3.3.3.2 Key Findings 74
3.3.3.3 Key Issues Addressed 75
3.4 Conclusion 77
References 77
4 Transforming the Technologies for Resilient and Digital Future During
COVID-19 Pandemic 81
Garima Kohli and Kumar Gourav
4.1 Introduction 82
4.2 Digital Technologies Used 84
4.2.1 Artificial Intelligence 85
4.2.2 Internet of Things 85
4.2.3 Telehealth/Telemedicine 87
4.2.4 Cloud Computing 87
4.2.5 Blockchain 88
4.2.6 5g 89
4.3 Challenges in Transforming Digital Technology 90
4.3.1 Increasing Digitalization 91
4.3.2 Work From Home Culture 91
4.3.3 Workplace Monitoring and Techno Stress 91
4.3.4 Online Fraud 92
4.3.5 Accessing Internet 92
4.3.6 Internet Shutdowns 92
4.3.7 Digital Payments 92
4.3.8 Privacy and Surveillance 93
4.4 Implications for Research 93
4.5 Conclusion 94
References 95
Part II: Plant Pathology 101
5 Plant Pathology Detection Using Deep Learning 103
Sangeeta V., Appala S. Muttipati and Brahmaji Godi
5.1 Introduction 104
5.2 Plant Leaf Disease 105
5.3 Background Knowledge 109
5.4 Architecture of ResNet 512 V 2 111
5.4.1 Working of Residual Network 112
5.5 Methodology 113
5.5.1 Image Resizing 113
5.5.2 Data Augmentation 113
5.5.2.1 Types of Data Augmentation 114
5.5.3 Data Normalization 114
5.5.4 Data Splitting 116
5.6 Result Analysis 116
5.6.1 Data Collection 117
5.6.2 Feature Extractions 117
5.6.3 Plant Leaf Disease Detection 117
5.7 Conclusion 119
References 120
6 Smart Irrigation and Cultivation Recommendation System for Precision
Agriculture Driven by IoT 123
N. Marline Joys Kumari, N. Thirupathi Rao and Debnath Bhattacharyya
6.1 Introduction 124
6.1.1 Background of the Problem 127
6.1.1.1 Need of Water Management 127
6.1.1.2 Importance of Precision Agriculture 127
6.1.1.3 Internet of Things 128
6.1.1.4 Application of IoT in Machine Learning and Deep Learning 129
6.2 Related Works 131
6.3 Challenges of IoT in Smart Irrigation 133
6.4 Farmers' Challenges in the Current Situation 135
6.5 Data Collection in Precision Agriculture 136
6.5.1 Algorithm 136
6.5.1.1 Environmental Consideration on Stage Production of Crop 140
6.5.2 Implementation Measures 141
6.5.2.1 Analysis of Relevant Vectors 141
6.5.2.2 Mean Square Error 141
6.5.2.3 Potential of IoT in Precision Agriculture 141
6.5.3 Architecture of the Proposed Model 143
6.6 Conclusion 147
References 147
7 Machine Learning-Based Hybrid Model for Wheat Yield Prediction 151
Haneet Kour, Vaishali Pandith, Jatinder Manhas and Vinod Sharma
7.1 Introduction 152
7.2 Related Work 153
7.3 Materials and Methods 155
7.3.1 Methodology for the Current Work 155
7.3.1.1 Data Collection for Wheat Crop 155
7.3.1.2 Data Pre-Processing 156
7.3.1.3 Implementation of the Proposed Hybrid Model 157
7.3.2 Techniques Used for Feature Selection 159
7.3.2.1 ReliefF Algorithm 159
7.3.2.2 Genetic Algorithm 161
7.3.3 Implementation of Machine Learning Techniques for Wheat Yield
Prediction 162
7.3.3.1 K-Nearest Neighbor 162
7.3.3.2 Artificial Neural Network 163
7.3.3.3 Logistic Regression 164
7.3.3.4 Naïve Bayes 164
7.3.3.5 Support Vector Machine 165
7.3.3.6 Linear Discriminant Analysis 166
7.4 Experimental Result and Analysis 167
7.5 Conclusion 173
Acknowledgment 173
References 174
8 A Status Quo of Machine Learning Algorithms in Smart Agricultural Systems
Employing IoT-Based WSN: Trends, Challenges and Futuristic Competences 177
Abhishek Bhola, Suraj Srivastava, Ajit Noonia, Bhisham Sharma and Sushil
Kumar Narang
8.1 Introduction 178
8.2 Types of Wireless Sensor for Smart Agriculture 179
8.3 Application of Machine Learning Algorithms for Smart Decision Making in
Smart Agriculture 179
8.4 ml and WSN-Based Techniques for Smart Agriculture 185
8.5 Future Scope in Smart Agriculture 188
8.6 Conclusion 190
References 190
Part III: Smart City and Villages 197
9 Impact of Data Pre-Processing in Information Retrieval for Data Analytics
199
Huma Naz, Sachin Ahuja, Rahul Nijhawan and Neelu Jyothi Ahuja
9.1 Introduction 200
9.1.1 Tasks Involved in Data Pre-Processing 200
9.2 Related Work 202
9.3 Experimental Setup and Methodology 205
9.3.1 Methodology 205
9.3.2 Application of Various Data Pre-Processing Tasks on Datasets 206
9.3.3 Applied Techniques 207
9.3.3.1 Decision Tree 207
9.3.3.2 Naive Bayes 207
9.3.3.3 Artificial Neural Network 208
9.3.4 Proposed Work 208
9.3.4.1 PIMA Diabetes Dataset (PID) 208
9.3.5 Cleveland Heart Disease Dataset 211
9.3.6 Framingham Heart Study 215
9.3.7 Diabetic Dataset 217
9.4 Experimental Result and Discussion 220
9.5 Conclusion and Future Work 222
References 222
10 Cloud Computing Security, Risk, and Challenges: A Detailed Analysis of
Preventive Measures and Applications 225
Anurag Sinha, N. K. Singh, Ayushman Srivastava, Sagorika Sen and Samarth
Sinha
10.1 Introduction 226
10.2 Background 228
10.2.1 History of Cloud Computing 228
10.2.1.1 Software-as-a-Service Model 230
10.2.1.2 Infrastructure-as-a-Service Model 230
10.2.1.3 Platform-as-a-Service Model 232
10.2.2 Types of Cloud Computing 232
10.2.3 Cloud Service Model 232
10.2.4 Characteristics of Cloud Computing 234
10.2.5 Advantages of Cloud Computing 234
10.2.6 Challenges in Cloud Computing 235
10.2.7 Cloud Security 236
10.2.7.1 Foundation Security 236
10.2.7.2 SaaS and PaaS Host Security 237
10.2.7.3 Virtual Server Security 237
10.2.7.4 Foundation Security: The Application Level 238
10.2.7.5 Supplier Data and Its Security 238
10.2.7.6 Need of Security in Cloud 239
10.2.8 Cloud Computing Applications 239
10.3 Literature Review 241
10.4 Cloud Computing Challenges and Its Solution 242
10.4.1 Solution and Practices for Cloud Challenges 246
10.5 Cloud Computing Security Issues and Its Preventive Measures 248
10.5.1 General Security Threats in Cloud 249
10.5.2 Preventive Measures 254
10.6 Cloud Data Protection and Security Using Steganography 258
10.6.1 Types of Steganography 259
10.6.2 Data Steganography in Cloud Environment 260
10.6.3 Pixel Value Differencing Method 261
10.7 Related Study 263
10.8 Conclusion 263
References 264
11 Internet of Drone Things: A New Age Invention 269
Prachi Dahiya
11.1 Introduction 269
11.2 Unmanned Aerial Vehicles 271
11.2.1 UAV Features and Working 274
11.2.2 IoDT Architecture 275
11.3 Application Areas 280
11.3.1 Other Application Areas 284
11.4 IoDT Attacks 285
11.4.1 Counter Measures 291
11.5 Fusion of IoDT With Other Technologies 296
11.6 Recent Advancements in IoDT 299
11.7 Conclusion 302
References 303
12 Computer Vision-Oriented Gesture Recognition System for Real-Time ISL
Prediction 305
Mukul Joshi, Gayatri Valluri, Jyoti Rawat and Kriti
12.1 Introduction 305
12.2 Literature Review 307
12.3 System Architecture 309
12.3.1 Model Development Phase 309
12.3.2 Development Environment Phase 311
12.4 Methodology 312
12.4.1 Image Pre-Processing Phase 312
12.4.2 Model Building Phase 313
12.5 Implementation and Results 314
12.5.1 Performance 314
12.5.2 Confusion Matrix 318
12.6 Conclusion and Future Scope 318
References 319
13 Recent Advances in Intelligent Transportation Systems in India:
Analysis, Applications, Challenges, and Future Work 323
Elamurugan Balasundaram, Cailassame Nedunchezhian, Mathiazhagan Arumugam
and Vinoth Asaikannu
13.1 Introduction 324
13.2 A Primer on ITS 325
13.3 The ITS Stages 326
13.4 Functions of ITS 327
13.5 ITS Advantages 328
13.6 ITS Applications 329
13.7 ITS Across the World 331
13.8 India's Status of ITS 333
13.9 Suggestions for Improving India's ITS Position 334
13.10 Conclusion 335
References 335
14 Evolutionary Approaches in Navigation Systems for Road Transportation
System 341
Noopur Tyagi, Jaiteg Singh and Saravjeet Singh
14.1 Introduction 342
14.1.1 Navigation System 343
14.1.2 Genetic Algorithm 347
14.1.3 Differential Evolution 348
14.2 Related Studies 349
14.2.1 Related Studies of Evolutionary Algorithms 351
14.3 Navigation Based on Evolutionary Algorithm 352
14.3.1 Operators and Terms Used in Evolutionary Algorithms 353
14.3.2 Operator and Terms Used in Evolutionary Algorithm 357
14.4 Meta-Heuristic Algorithms for Navigation 359
14.4.1 Drawbacks of DE 362
14.5 Conclusion 362
References 363
15 IoT-Based Smart Parking System for Indian Smart Cities 369
E. Fantin Irudaya Raj, M. Appadurai, M. Chithamabara Thanu and E. Francy
Irudaya Rani
15.1 Introduction 370
15.2 Indian Smart Cities Mission 371
15.3 Vehicle Parking and Its Requirements in a Smart City Configuration 373
15.4 Technologies Incorporated in a Vehicle Parking System in Smart Cities
375
15.5 Sensors for Vehicle Parking System 383
15.5.1 Active Sensors 384
15.5.2 Passive Sensors 386
15.6 IoT-Based Vehicle Parking System for Indian Smart Cities 387
15.6.1 Guidance to the Customers Through Smart Devices 389
15.6.2 Smart Parking Reservation System 391
15.7 Advantages of IoT-Based Vehicle Parking System 392
15.8 Conclusion 392
References 393
16 Security of Smart Home Solution Based on Secure Piggybacked Key Exchange
Mechanism 399
Jatin Arora and Saravjeet Singh
16.1 Introduction 400
16.2 IoT Challenges 404
16.3 IoT Vulnerabilities 405
16.4 Layer-Wise Threats in IoT Architecture 406
16.4.1 Sensing Layer Security Issues 407
16.4.2 Network Layer Security Issues 408
16.4.3 Middleware Layer Security Issues 409
16.4.4 Gateways Security Issues 410
16.4.5 Application Layer Security Issues 411
16.5 Attack Prevention Techniques 411
16.5.1 IoT Authentication 412
16.5.2 Session Establishment 413
16.6 Conclusion 414
References 414
17 Machine Learning Models in Prediction of Strength Parameters of
FRP-Wrapped RC Beams 419
Aman Kumar, Harish Chandra Arora, Nishant Raj Kapoor and Ashok Kumar
17.1 Introduction 420
17.1.1 Defining Fiber-Reinforced Polymer 421
17.1.2 Types of FRP Composites 422
17.1.2.1 Carbon Fiber-Reinforced Polymer 422
17.1.2.2 Glass Fiber 423
17.1.2.3 Aramid Fiber 424
17.1.2.4 Basalt Fiber 424
17.2 Strengthening of RC Beams With FRP Systems 425
17.2.1 FRP-to-Concrete Bond 426
17.2.2 Flexural Strengthening of Beams With FRP Composite 427
17.2.3 Shear Strengthening of Beams With FRP Composite 427
17.3 Machine Learning Models 428
17.3.1 Prediction of Bond Strength 430
17.3.2 Estimation of Flexural Strength 434
17.3.3 Estimation of Shear Strength 434
17.4 Conclusion 441
References 441
18 Prediction of Indoor Air Quality Using Artificial Intelligence 447
Nishant Raj Kapoor, Ashok Kumar, Anuj Kumar, Aman Kumar and Harish Chandra
Arora
18.1 Introduction 448
18.2 Indoor Air Quality Parameters 450
18.2.1 Physical Parameters 453
18.2.1.1 Humidity 453
18.2.1.2 Air Changes (Ventilation) 454
18.2.1.3 Air Velocity 454
18.2.1.4 Temperature 454
18.2.2 Particulate Matter 455
18.2.3 Chemical Parameters 456
18.2.3.1 Carbon Dioxide 456
18.2.3.2 Carbon Monoxide 456
18.2.3.3 Nitrogen Dioxide 456
18.2.3.4 Sulphur Dioxide 457
18.2.3.5 Ozone 457
18.2.3.6 Gaseous Ammonia 458
18.2.3.7 Volatile Organic Compounds 458
18.2.4 Biological Parameters 459
18.3 AI in Indoor Air Quality Prediction 459
18.4 Conclusion 464
References 465
Index 471