Machine Learning and Deep Learning Techniques for Medical Science (eBook, ePUB)
Redaktion: Devi, K. Gayathri; Ngoc, Le Anh; Balasubramanian, Kishore
48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
48,95 €
Als Download kaufen
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
24 °P sammeln
Machine Learning and Deep Learning Techniques for Medical Science (eBook, ePUB)
Redaktion: Devi, K. Gayathri; Ngoc, Le Anh; Balasubramanian, Kishore
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book presents the integration of machine learning and deep learning algorithms that can be applied in the healthcare sector to reduce the time needed by doctors, radiologists, and other medical professionals to analyze, predict, and diagnose conditions with accurate results.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 11.2MB
This book presents the integration of machine learning and deep learning algorithms that can be applied in the healthcare sector to reduce the time needed by doctors, radiologists, and other medical professionals to analyze, predict, and diagnose conditions with accurate results.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 412
- Erscheinungstermin: 11. Mai 2022
- Englisch
- ISBN-13: 9781000583366
- Artikelnr.: 63609794
- Verlag: Taylor & Francis
- Seitenzahl: 412
- Erscheinungstermin: 11. Mai 2022
- Englisch
- ISBN-13: 9781000583366
- Artikelnr.: 63609794
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Dr. K. Gayathri Devi is a Professor at the Department of Electronics and Communication Engineering, Dr. N.G.P Institute of Technology, Tamilnadu, India. Dr Kishore Balasubramanian is an Assistant Professor (Senior Scale) in the Department of EEE at Dr. Mahalingam College of Engineering & Technology, India. Dr. Le Anh Ngoc is a Vice Dean of Electronics and Telecommunications Faculty, Electric Power University, Hanoi, Vietnam.
Chapter 1. A Comprehensive Study on MLP and CNN, and the Implementation of
Multi-Class Image Classification using Deep CNN
Chapter 2. An Efficient Technique for Image Compression and Quality
Retrieval in Diagnosis of Brain Tumour Hyper Spectral Image
Chapter 3. Classification of Breast Thermograms using a Multi-layer
Perceptron with Back Propagation Learning
Chapter 4. Neural Networks for Medical Image Computing
Chapter 5. Recent Trends in Bio-Medical Waste, Challenges and Opportunities
Chapter 6. Teager-Kaiser Boost Clustered Segmentation of Retinal Fundus
Images for Glaucoma Detection
Chapter 7. IoT-Based Deep Neural Network Approach for Heart Rate and SpO2
Prediction
Chapter 8. An Intelligent System for Diagnosis and Prediction of Breast
Cancer Malignant Features using Machine Learning Algorithms
Chapter 9. Medical Image Classification with Artificial and Deep
Convolutional Neural Networks: A Comparative Study
Chapter 10. Convolutional Neural Network for Classification of Skin Cancer
Images
Chapter 11. Application of Artificial Intelligence in Medical Imaging
Chapter 12. Machine Learning Algorithms Used in Medical Field with a Case
Study
Chapter 13. Dual Customized U-Net-based Based Automated Diagnosis of
Glaucoma
Chapter 14. MuSCF-Net: Multi-scale, Multi-Channel Feature Network using
Resnet-Based Attention Mechanism for Breast Histopathological Image
Classification
Chapter 15. Artificial Intelligence is Revolutionizing Cancer Research
Chapter 16. Deep Learning to Diagnose Diseases and Security in 5G
Healthcare InformaticsChapter 17. New Approaches in Machine-based Image
Analysis for Medical Oncology
Chapter 18. Performance Analysis of Deep Convolutional Neural Networks for
Diagnosing COVID-19: Data to Deployment
Chapter 19. Stacked Auto Encoder Deep Neural Network with Principal
Components Analysis for Identification of Chronic Kidney Disease
Multi-Class Image Classification using Deep CNN
Chapter 2. An Efficient Technique for Image Compression and Quality
Retrieval in Diagnosis of Brain Tumour Hyper Spectral Image
Chapter 3. Classification of Breast Thermograms using a Multi-layer
Perceptron with Back Propagation Learning
Chapter 4. Neural Networks for Medical Image Computing
Chapter 5. Recent Trends in Bio-Medical Waste, Challenges and Opportunities
Chapter 6. Teager-Kaiser Boost Clustered Segmentation of Retinal Fundus
Images for Glaucoma Detection
Chapter 7. IoT-Based Deep Neural Network Approach for Heart Rate and SpO2
Prediction
Chapter 8. An Intelligent System for Diagnosis and Prediction of Breast
Cancer Malignant Features using Machine Learning Algorithms
Chapter 9. Medical Image Classification with Artificial and Deep
Convolutional Neural Networks: A Comparative Study
Chapter 10. Convolutional Neural Network for Classification of Skin Cancer
Images
Chapter 11. Application of Artificial Intelligence in Medical Imaging
Chapter 12. Machine Learning Algorithms Used in Medical Field with a Case
Study
Chapter 13. Dual Customized U-Net-based Based Automated Diagnosis of
Glaucoma
Chapter 14. MuSCF-Net: Multi-scale, Multi-Channel Feature Network using
Resnet-Based Attention Mechanism for Breast Histopathological Image
Classification
Chapter 15. Artificial Intelligence is Revolutionizing Cancer Research
Chapter 16. Deep Learning to Diagnose Diseases and Security in 5G
Healthcare InformaticsChapter 17. New Approaches in Machine-based Image
Analysis for Medical Oncology
Chapter 18. Performance Analysis of Deep Convolutional Neural Networks for
Diagnosing COVID-19: Data to Deployment
Chapter 19. Stacked Auto Encoder Deep Neural Network with Principal
Components Analysis for Identification of Chronic Kidney Disease
Chapter 1. A Comprehensive Study on MLP and CNN, and the Implementation of
Multi-Class Image Classification using Deep CNN
Chapter 2. An Efficient Technique for Image Compression and Quality
Retrieval in Diagnosis of Brain Tumour Hyper Spectral Image
Chapter 3. Classification of Breast Thermograms using a Multi-layer
Perceptron with Back Propagation Learning
Chapter 4. Neural Networks for Medical Image Computing
Chapter 5. Recent Trends in Bio-Medical Waste, Challenges and Opportunities
Chapter 6. Teager-Kaiser Boost Clustered Segmentation of Retinal Fundus
Images for Glaucoma Detection
Chapter 7. IoT-Based Deep Neural Network Approach for Heart Rate and SpO2
Prediction
Chapter 8. An Intelligent System for Diagnosis and Prediction of Breast
Cancer Malignant Features using Machine Learning Algorithms
Chapter 9. Medical Image Classification with Artificial and Deep
Convolutional Neural Networks: A Comparative Study
Chapter 10. Convolutional Neural Network for Classification of Skin Cancer
Images
Chapter 11. Application of Artificial Intelligence in Medical Imaging
Chapter 12. Machine Learning Algorithms Used in Medical Field with a Case
Study
Chapter 13. Dual Customized U-Net-based Based Automated Diagnosis of
Glaucoma
Chapter 14. MuSCF-Net: Multi-scale, Multi-Channel Feature Network using
Resnet-Based Attention Mechanism for Breast Histopathological Image
Classification
Chapter 15. Artificial Intelligence is Revolutionizing Cancer Research
Chapter 16. Deep Learning to Diagnose Diseases and Security in 5G
Healthcare InformaticsChapter 17. New Approaches in Machine-based Image
Analysis for Medical Oncology
Chapter 18. Performance Analysis of Deep Convolutional Neural Networks for
Diagnosing COVID-19: Data to Deployment
Chapter 19. Stacked Auto Encoder Deep Neural Network with Principal
Components Analysis for Identification of Chronic Kidney Disease
Multi-Class Image Classification using Deep CNN
Chapter 2. An Efficient Technique for Image Compression and Quality
Retrieval in Diagnosis of Brain Tumour Hyper Spectral Image
Chapter 3. Classification of Breast Thermograms using a Multi-layer
Perceptron with Back Propagation Learning
Chapter 4. Neural Networks for Medical Image Computing
Chapter 5. Recent Trends in Bio-Medical Waste, Challenges and Opportunities
Chapter 6. Teager-Kaiser Boost Clustered Segmentation of Retinal Fundus
Images for Glaucoma Detection
Chapter 7. IoT-Based Deep Neural Network Approach for Heart Rate and SpO2
Prediction
Chapter 8. An Intelligent System for Diagnosis and Prediction of Breast
Cancer Malignant Features using Machine Learning Algorithms
Chapter 9. Medical Image Classification with Artificial and Deep
Convolutional Neural Networks: A Comparative Study
Chapter 10. Convolutional Neural Network for Classification of Skin Cancer
Images
Chapter 11. Application of Artificial Intelligence in Medical Imaging
Chapter 12. Machine Learning Algorithms Used in Medical Field with a Case
Study
Chapter 13. Dual Customized U-Net-based Based Automated Diagnosis of
Glaucoma
Chapter 14. MuSCF-Net: Multi-scale, Multi-Channel Feature Network using
Resnet-Based Attention Mechanism for Breast Histopathological Image
Classification
Chapter 15. Artificial Intelligence is Revolutionizing Cancer Research
Chapter 16. Deep Learning to Diagnose Diseases and Security in 5G
Healthcare InformaticsChapter 17. New Approaches in Machine-based Image
Analysis for Medical Oncology
Chapter 18. Performance Analysis of Deep Convolutional Neural Networks for
Diagnosing COVID-19: Data to Deployment
Chapter 19. Stacked Auto Encoder Deep Neural Network with Principal
Components Analysis for Identification of Chronic Kidney Disease