Machine Learning and Deep Learning Techniques in Wireless and Mobile Networking Systems (eBook, PDF)
Redaktion: Suganthi, K.; Ching, Peter Ho Chiung; Rajesh, G.; Karthik, R.
48,95 €
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
48,95 €
Als Download kaufen
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
48,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
24 °P sammeln
Machine Learning and Deep Learning Techniques in Wireless and Mobile Networking Systems (eBook, PDF)
Redaktion: Suganthi, K.; Ching, Peter Ho Chiung; Rajesh, G.; Karthik, R.
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book offers the latest advances and results in the fields of machine learning and deep learning for wireless communications and provides positive discussions on the challenges and prospects. It includes a broad spectrum in understanding the improvements motivated by specific constraints posed by wireless communications.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 18.31MB
Andere Kunden interessierten sich auch für
- Machine Learning and Deep Learning Techniques in Wireless and Mobile Networking Systems (eBook, ePUB)48,95 €
- Smart Sensor Networks Using AI for Industry 4.0 (eBook, PDF)48,95 €
- Deep Learning for Biomedical Applications (eBook, PDF)48,95 €
- Intelligent Systems and Machine Learning for Industry (eBook, PDF)59,95 €
- Machine Learning and Artificial Intelligence in Healthcare Systems (eBook, PDF)62,95 €
- Convergence of Blockchain, AI, and IoT (eBook, PDF)72,95 €
- Smart and Intelligent Systems (eBook, PDF)48,95 €
-
-
-
This book offers the latest advances and results in the fields of machine learning and deep learning for wireless communications and provides positive discussions on the challenges and prospects. It includes a broad spectrum in understanding the improvements motivated by specific constraints posed by wireless communications.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 284
- Erscheinungstermin: 13. September 2021
- Englisch
- ISBN-13: 9781000441819
- Artikelnr.: 62417602
- Verlag: Taylor & Francis
- Seitenzahl: 284
- Erscheinungstermin: 13. September 2021
- Englisch
- ISBN-13: 9781000441819
- Artikelnr.: 62417602
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
K. Suganthi received her B.E. degree in Computer Science and Engineering from Madras University, Masters in Systems Engineering and Operations Research and Ph.D. in Wireless Sensor Network from the Anna University. She is currently working as Assistant Professor Senior in the School of Electronics Engineering (SENSE) at Vellore Institute of Technology, Chennai campus, India since 2016. She is the author of about 20 scientific publications on journals and International conferences. Her research interests include Wireless Sensor Network, Internet of Things, Data Analytics and AI. R. Karthik obtained his Doctoral degree from Vellore Institute of Technology, India and Master's degree from Anna University, India. Currently, He serves as Senior Assistant Professor in the Research Center for Cyber Physical Systems, Vellore Institute of Technology, Chennai. His research interest includes Deep Learning, Computer Vision, Digital Image Processing, and Medical Image Analysis. He has published around 32 papers in peer reviewed journals and conferences. He is an active reviewer for journals published by Elsevier, IEEE Springer and Nature. G. Rajesh is working as an Assistant professor, Department of Information Technology of Anna University, Chennai, India. He completed his PhD from Anna University, Chennai in wireless sensor networks. He has around 12 years of teaching and research experience. His area of research interest includes wireless sensor networks and its IoT applications, software engineering and computational optimization. He published more than 20 research papers in journals and conferences. Peter Ho Chiung Ching received his Ph.D. in Information Technology from the Faculty of Computing and Informatics, Multimedia University. His doctoral research work was on the performance evaluation of multimodal biometric systems using fusion techniques. Dr. Ho is a Senior Member of the Institute of Electrical and Electronics Engineers. Dr. Ho has published a number of peer reviewed papers related to location intelligence, multimodal biometrics, action recognition and text mining. He is currently an Adjunct Senior Research Fellow in the Department of Computing and Information Systems, School of Science and Technology, Sunway University.
1. Machine Learning Driven Design and Optimization of Mobile/Wireless
System. 2. Intelligent Algorithm and Techniques for Effective Wireless
Communication. 3. Machine Learning Based Intelligent Protocols. 4.
Intelligent Schemes with Machine Learning and Deep Learning for Congestion
Control. 5. Resource Allocation and Optimization in Wireless Network Using
Machine Learning and Deep Learning. 6. Data Analysis and Security Schemes.
7. Applications of Machine Learning and Deep Learning. 8. Multimedia
Communication. 9. Energy Management.
System. 2. Intelligent Algorithm and Techniques for Effective Wireless
Communication. 3. Machine Learning Based Intelligent Protocols. 4.
Intelligent Schemes with Machine Learning and Deep Learning for Congestion
Control. 5. Resource Allocation and Optimization in Wireless Network Using
Machine Learning and Deep Learning. 6. Data Analysis and Security Schemes.
7. Applications of Machine Learning and Deep Learning. 8. Multimedia
Communication. 9. Energy Management.
1. Machine Learning Driven Design and Optimization of Mobile/Wireless
System. 2. Intelligent Algorithm and Techniques for Effective Wireless
Communication. 3. Machine Learning Based Intelligent Protocols. 4.
Intelligent Schemes with Machine Learning and Deep Learning for Congestion
Control. 5. Resource Allocation and Optimization in Wireless Network Using
Machine Learning and Deep Learning. 6. Data Analysis and Security Schemes.
7. Applications of Machine Learning and Deep Learning. 8. Multimedia
Communication. 9. Energy Management.
System. 2. Intelligent Algorithm and Techniques for Effective Wireless
Communication. 3. Machine Learning Based Intelligent Protocols. 4.
Intelligent Schemes with Machine Learning and Deep Learning for Congestion
Control. 5. Resource Allocation and Optimization in Wireless Network Using
Machine Learning and Deep Learning. 6. Data Analysis and Security Schemes.
7. Applications of Machine Learning and Deep Learning. 8. Multimedia
Communication. 9. Energy Management.