Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Over the last decade, there has been a significant shift from traditional mechanistic and empirical modelling into statistical and data-driven modelling for applications in reaction engineering. In particular, the integration of machine learning and first-principle models has demonstrated significant potential and success in the discovery of (bio)chemical kinetics, prediction and optimisation of complex reactions, and scale-up of industrial reactors. Summarising the latest research and illustrating the current frontiers in applications of hybrid modelling for chemical and biochemical…mehr
Over the last decade, there has been a significant shift from traditional mechanistic and empirical modelling into statistical and data-driven modelling for applications in reaction engineering. In particular, the integration of machine learning and first-principle models has demonstrated significant potential and success in the discovery of (bio)chemical kinetics, prediction and optimisation of complex reactions, and scale-up of industrial reactors.
Summarising the latest research and illustrating the current frontiers in applications of hybrid modelling for chemical and biochemical reaction engineering, Machine Learning and Hybrid Modelling for Reaction Engineering fills a gap in the methodology development of hybrid models. With a systematic explanation of the fundamental theory of hybrid model construction, time-varying parameter estimation, model structure identification and uncertainty analysis, this book is a great resource for both chemical engineers looking to use the latest computational techniques in their research and computational chemists interested in new applications for their work.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, D ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Dr. Dongda Zhang is a Lecturer at Department of Chemical Engineering, the University of Manchester. His research focuses on the application of hybrid modelling and data intelligence in complex reaction systems. These include chemical and biochemical process modelling, optimisation, control, and data analytics. He completed his PhD research at the University of Cambridge within two years and graduated after the university special approval on Thesis Early Submission (2016). He is an Honorary Research Fellow at Imperial College London, a member of the UK Biotechnology and Biological Sciences Research Council Pool of Experts, a member of Editorial Board for 'Biochemical Engineering Journal', an Associate Editor of 'Digital Chemical Engineering', and a member of the Industrial Management Board for the Centre for Process Analytics and Control Technology. Dr Ehecatl Antonio Del Rio Chanona is a Lecturer at the Department of Chemical Engineering and the Sargent Centre for Process Systems Engineering, Imperial College London. His research interests include the application of optimisation and machine learning techniques to chemical engineering systems. He has been in receipt of numerous awards including the fellowship from the UK Engineering and Physical Sciences Research Council (2017), the Danckwerts-Pergamon Prize at the University of Cambridge (2017), the Sir William Wakeham award at Imperial College London (2019), and the Nicklin Medal by the Institution of Chemical Engineers in recognition for exceptional research that will have significant impact in areas of process systems engineering and adoption of intelligent and autonomous learning algorithms to chemical engineering (2020).
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826