Machine Learning and Knowledge Extraction (eBook, PDF)
6th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2022, Vienna, Austria, August 23-26, 2022, Proceedings
Redaktion: Holzinger, Andreas; Weippl, Edgar; Tjoa, A Min; Kieseberg, Peter
73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
73,95 €
Als Download kaufen
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
37 °P sammeln
Machine Learning and Knowledge Extraction (eBook, PDF)
6th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2022, Vienna, Austria, August 23-26, 2022, Proceedings
Redaktion: Holzinger, Andreas; Weippl, Edgar; Tjoa, A Min; Kieseberg, Peter
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book constitutes the refereed proceedings of the 6th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2022, held in Vienna, Austria during August 2022.
The 23 full papers presented were carefully reviewed and selected from 45 submissions. The papers are covering a wide range from integrative machine learning approach, considering the importance of data science and visualization for the algorithmic pipeline with a strong emphasis on privacy, data protection, safety and security.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 48.98MB
Andere Kunden interessierten sich auch für
- Machine Learning and Knowledge Extraction (eBook, PDF)44,95 €
- Database and Expert Systems Applications (eBook, PDF)69,95 €
- Intelligent Computing Theories and Application (eBook, PDF)89,95 €
- Database Systems for Advanced Applications. DASFAA 2022 International Workshops (eBook, PDF)69,95 €
- Advances and Trends in Artificial Intelligence. Theory and Practices in Artificial Intelligence (eBook, PDF)89,95 €
- Database and Expert Systems Applications (eBook, PDF)81,95 €
- Machine Learning and Knowledge Discovery in Databases (eBook, PDF)69,95 €
-
-
-
This book constitutes the refereed proceedings of the 6th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2022, held in Vienna, Austria during August 2022.
The 23 full papers presented were carefully reviewed and selected from 45 submissions. The papers are covering a wide range from integrative machine learning approach, considering the importance of data science and visualization for the algorithmic pipeline with a strong emphasis on privacy, data protection, safety and security.
The 23 full papers presented were carefully reviewed and selected from 45 submissions. The papers are covering a wide range from integrative machine learning approach, considering the importance of data science and visualization for the algorithmic pipeline with a strong emphasis on privacy, data protection, safety and security.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer International Publishing
- Seitenzahl: 378
- Erscheinungstermin: 10. August 2022
- Englisch
- ISBN-13: 9783031144639
- Artikelnr.: 65002515
- Verlag: Springer International Publishing
- Seitenzahl: 378
- Erscheinungstermin: 10. August 2022
- Englisch
- ISBN-13: 9783031144639
- Artikelnr.: 65002515
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Explain to Not Forget: Defending Catastrophic Forgetting with XAI.- Approximation of SHAP values for Randomized Tree Ensembles.- Color shadows (part I): exploratory usability evaluation of activation maps in radiological machine learning.- Effects of Fairness and Explanation on Trust in Ethical AI.- Towards Refined Classifications driven by SHAP explanations.- Global Intepretable Calibration Index, a New Metric to Estimate Machine Learning Models' Calibration.- The ROC Diagonal is not Layperson's Chance: a New Baseline Shows the Useful Area.- Debiasing MDI Feature Importance and SHAP values in Tree Ensembles.- The Influence of User Diversity on Motives and Barriers when Using Health Apps - A Conjoint Investigation of the Intention-Behavior Gap.- Identifying Fraud Rings Using Domain Aware Weighted Community Detection.- Capabilities, limitations and challenges of style transfer with CycleGANs: a study on automatic ring design generation.- Semantic Causal Abstraction for Event Prediction.- An Evaluation Study of Intrinsic Motivation Techniques applied to Reinforcement Learning over Hard Exploration Environments.- Towards Generating Financial Reports From Tabular Data Using Transformers.- Evaluating the performance of SOBEK text mining keyword extraction algorithm.- Classification of Screenshot Image Captured in Online Meeting System.- A survey on the application of virtual reality in event-related potential research.- Visualizing Large Collections of URLs Using the Hilbert Curve.- How to Reduce the Time Necessary for Evaluation of Tree-based Models.- An Empirical Analysis of and Guidelines for Synthetic-Data-based Anomaly Detection.- SECI Model in Data-Based Procedure for the Assessment of the Frailty State in Diabetic Patients.- Comparing machine learning correlations to domain experts' causal knowledge: Employee turnover use case.- Machine learning and knowledge extraction to support work safety for smart forest operations.
Explain to Not Forget: Defending Catastrophic Forgetting with XAI.- Approximation of SHAP values for Randomized Tree Ensembles.- Color shadows (part I): exploratory usability evaluation of activation maps in radiological machine learning.- Effects of Fairness and Explanation on Trust in Ethical AI.- Towards Refined Classifications driven by SHAP explanations.- Global Intepretable Calibration Index, a New Metric to Estimate Machine Learning Models' Calibration.- The ROC Diagonal is not Layperson's Chance: a New Baseline Shows the Useful Area.- Debiasing MDI Feature Importance and SHAP values in Tree Ensembles.- The Influence of User Diversity on Motives and Barriers when Using Health Apps - A Conjoint Investigation of the Intention-Behavior Gap.- Identifying Fraud Rings Using Domain Aware Weighted Community Detection.- Capabilities, limitations and challenges of style transfer with CycleGANs: a study on automatic ring design generation.- Semantic Causal Abstraction for Event Prediction.- An Evaluation Study of Intrinsic Motivation Techniques applied to Reinforcement Learning over Hard Exploration Environments.- Towards Generating Financial Reports From Tabular Data Using Transformers.- Evaluating the performance of SOBEK text mining keyword extraction algorithm.- Classification of Screenshot Image Captured in Online Meeting System.- A survey on the application of virtual reality in event-related potential research.- Visualizing Large Collections of URLs Using the Hilbert Curve.- How to Reduce the Time Necessary for Evaluation of Tree-based Models.- An Empirical Analysis of and Guidelines for Synthetic-Data-based Anomaly Detection.- SECI Model in Data-Based Procedure for the Assessment of the Frailty State in Diabetic Patients.- Comparing machine learning correlations to domain experts' causal knowledge: Employee turnover use case.- Machine learning and knowledge extraction to support work safety for smart forest operations.