The book then transitions to practical implementation, detailing how to scale data preparation and feature engineering, optimize large model training and evaluation using techniques like AutoML and model compression, and implement MLOps for streamlined deployment and monitoring. It addresses crucial aspects of operationalizing ML, including CI/CD pipelines, model serving strategies, and drift detection.
Finally, the book delves into advanced and emerging topics: scaling deep learning architectures like transformers and LLMs, multimodal learning, and graph neural networks. It concludes with a discussion of responsible AI, covering bias mitigation, fairness, privacy, and the ethical implications of large-scale ML. The future of ML at scale is explored through the lens of emerging hardware, the convergence of cloud and edge computing, and the evolving role of ML in shaping society and industry.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, CY, CZ, D, DK, EW, E, FIN, F, GR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.