This bestseller helps students understand the algorithms of machine learning. It puts them on a path toward mastering the relevant mathematics and statistics as well as the necessary programming and experimentation. Along with improved Python code, this second edition includes two new chapters on deep belief networks and Gaussian processes. It incorporates new material on the support vector machine, random forests, the perceptron convergence theorem, filters, and more. All of the code is available on the author's website.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.