Machine Learning in Clinical Neuroimaging (eBook, PDF)
4th International Workshop, MLCN 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings
Redaktion: Abdulkadir, Ahmed; Wolfers, Thomas; Tax, Chantal; Rondina, Jane Maryam; Kumar, Vinod; Habes, Mohamad; Kia, Seyed Mostafa
44,95 €
44,95 €
inkl. MwSt.
Sofort per Download lieferbar
22 °P sammeln
44,95 €
Als Download kaufen
44,95 €
inkl. MwSt.
Sofort per Download lieferbar
22 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
44,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
22 °P sammeln
Machine Learning in Clinical Neuroimaging (eBook, PDF)
4th International Workshop, MLCN 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings
Redaktion: Abdulkadir, Ahmed; Wolfers, Thomas; Tax, Chantal; Rondina, Jane Maryam; Kumar, Vinod; Habes, Mohamad; Kia, Seyed Mostafa
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book constitutes the refereed proceedings of the 4th International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2021, held on September 27, 2021, in conjunction with MICCAI 2021. The workshop was held virtually due to the COVID-19 pandemic.
The 17 papers presented in this book were carefully reviewed and selected from 27 submissions. They were organized in topical sections named: computational anatomy and brain networks and time series.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 38.78MB
Andere Kunden interessierten sich auch für
- Machine Learning in Clinical Neuroimaging (eBook, PDF)40,95 €
- Segmentation, Classification, and Registration of Multi-modality Medical Imaging Data (eBook, PDF)40,95 €
- Machine Learning in Medical Imaging (eBook, PDF)73,95 €
- Interpretable and Annotation-Efficient Learning for Medical Image Computing (eBook, PDF)40,95 €
- Multimodal Learning for Clinical Decision Support and Clinical Image-Based Procedures (eBook, PDF)40,95 €
- Deep Generative Models, and Data Augmentation, Labelling, and Imperfections (eBook, PDF)53,95 €
- Medical Image Computing and Computer Assisted Intervention - MICCAI 2020 (eBook, PDF)73,95 €
-
-
-
This book constitutes the refereed proceedings of the 4th International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2021, held on September 27, 2021, in conjunction with MICCAI 2021. The workshop was held virtually due to the COVID-19 pandemic.
The 17 papers presented in this book were carefully reviewed and selected from 27 submissions. They were organized in topical sections named: computational anatomy and brain networks and time series.
The 17 papers presented in this book were carefully reviewed and selected from 27 submissions. They were organized in topical sections named: computational anatomy and brain networks and time series.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer International Publishing
- Seitenzahl: 176
- Erscheinungstermin: 22. September 2021
- Englisch
- ISBN-13: 9783030875862
- Artikelnr.: 63295211
- Verlag: Springer International Publishing
- Seitenzahl: 176
- Erscheinungstermin: 22. September 2021
- Englisch
- ISBN-13: 9783030875862
- Artikelnr.: 63295211
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Computational Anatomy.- Unfolding the medial temporal lobe cortex to characterize neurodegeneration due to Alzheimer's disease pathology using ex vivo imaging.- Distinguishing Healthy Ageing from Dementia: a Biomechanical Simulation of Brain Atrophy using Deep Networks.- Towards Self-Explainable Classifiers and Regressors in Neuroimaging with Normalizing Flows.- Patch vs. global image-based unsupervised anomaly detection in MR brain scans of early Parkinsonian patients.- MRI image registration considerably improves CNN-based disease classification.- Dynamic Sub-graph Learning for Patch-based Cortical Folding Classification.- Detection of abnormal folding patterns with unsupervised deep generative models.- PialNN: A Fast Deep Learning Framework for Cortical Pial Surface Reconstruction.- Multi-Modal Brain Segmentation Using Hyper-Fused Convolutional Neural Network.- Robust Hydrocephalus Brain Segmentation via Globally and Locally Spatial Guidance.- Brain Networks and Time Series.- Geometric Deep Learning of the Human Connectome Project Multimodal Cortical Parcellation.- Deep Stacking Networks for Conditional Nonlinear Granger Causal Modeling of fMRI Data.- Dynamic Adaptive Spatio-temporal Graph Convolution for fMRI Modelling.- Structure-Function Mapping via Graph Neural Networks.- Improving Phenotype Prediction using Long-Range Spatio-Temporal Dynamics of Functional Connectivity.- H3K27M Mutations Prediction for Brainstem Gliomas Based on Diffusion Radiomics Learning.- Constrained Learning of Task-related and Spatially-Coherent Dictionaries from Task fMRI Data.
Computational Anatomy.- Unfolding the medial temporal lobe cortex to characterize neurodegeneration due to Alzheimer's disease pathology using ex vivo imaging.- Distinguishing Healthy Ageing from Dementia: a Biomechanical Simulation of Brain Atrophy using Deep Networks.- Towards Self-Explainable Classifiers and Regressors in Neuroimaging with Normalizing Flows.- Patch vs. global image-based unsupervised anomaly detection in MR brain scans of early Parkinsonian patients.- MRI image registration considerably improves CNN-based disease classification.- Dynamic Sub-graph Learning for Patch-based Cortical Folding Classification.- Detection of abnormal folding patterns with unsupervised deep generative models.- PialNN: A Fast Deep Learning Framework for Cortical Pial Surface Reconstruction.- Multi-Modal Brain Segmentation Using Hyper-Fused Convolutional Neural Network.- Robust Hydrocephalus Brain Segmentation via Globally and Locally Spatial Guidance.- Brain Networks and Time Series.- Geometric Deep Learning of the Human Connectome Project Multimodal Cortical Parcellation.- Deep Stacking Networks for Conditional Nonlinear Granger Causal Modeling of fMRI Data.- Dynamic Adaptive Spatio-temporal Graph Convolution for fMRI Modelling.- Structure-Function Mapping via Graph Neural Networks.- Improving Phenotype Prediction using Long-Range Spatio-Temporal Dynamics of Functional Connectivity.- H3K27M Mutations Prediction for Brainstem Gliomas Based on Diffusion Radiomics Learning.- Constrained Learning of Task-related and Spatially-Coherent Dictionaries from Task fMRI Data.