Machine Learning in Educational Sciences (eBook, PDF)
Approaches, Applications and Advances
149,79 €
inkl. MwSt.
Sofort per Download lieferbar
Machine Learning in Educational Sciences (eBook, PDF)
Approaches, Applications and Advances
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This comprehensive volume investigates the untapped potential of machine learning in educational settings. It examines the profound impact machine learning can have on reshaping educational research. Each chapter delves into specific applications and advancements, sheds light on theory-building, and multidisciplinary research, and identifies areas for further development. It encompasses various topics, such as machine-based learning in psychological assessment. It also highlights the power of machine learning in analyzing large-scale international assessment data and utilizing natural language…mehr
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 9.89MB
- Upload möglich
Andere Kunden interessierten sich auch für
- Lisette NievesWorking for a Future (eBook, PDF)128,39 €
- William J. BooneAdvances in Rasch Analyses in the Human Sciences (eBook, PDF)149,79 €
- David C. GibsonComputational Learning Theories (eBook, PDF)160,49 €
- Ismail BaniadamTelegram as an E-Learning Tool in English for General Purposes (EGP) Context in Urmia University of Medical Sciences (UMSU) (eBook, PDF)13,99 €
- Educational Research in China (eBook, PDF)96,29 €
- Peter GrootenboerThe Theory of Practice Architectures (eBook, PDF)48,14 €
- Adrian WallworkAI-Assisted Writing and Presenting in English (eBook, PDF)32,09 €
-
-
-
This comprehensive volume investigates the untapped potential of machine learning in educational settings. It examines the profound impact machine learning can have on reshaping educational research. Each chapter delves into specific applications and advancements, sheds light on theory-building, and multidisciplinary research, and identifies areas for further development. It encompasses various topics, such as machine-based learning in psychological assessment. It also highlights the power of machine learning in analyzing large-scale international assessment data and utilizing natural language processing for science education. With contributions from leading scholars in the field, this book provides a comprehensive, evidence-based framework for leveraging machine-learning approaches to enhance educational outcomes. The book offers valuable insights and recommendations that could help shape the future of educational sciences.
Produktdetails
- Produktdetails
- Verlag: Springer Nature Singapore
- Seitenzahl: 389
- Erscheinungstermin: 24. Februar 2024
- Englisch
- ISBN-13: 9789819993796
- Artikelnr.: 70121311
- Verlag: Springer Nature Singapore
- Seitenzahl: 389
- Erscheinungstermin: 24. Februar 2024
- Englisch
- ISBN-13: 9789819993796
- Artikelnr.: 70121311
Myint Swe Khine currently teaches at the School of Education, Curtin University, Australia. He has more than 30 years of experience in teacher education. He received Master's degrees from the University of Southern California, USA, University of Surrey, UK, and the University of Leicester, UK, and a Doctoral degree from Curtin University, Australia. He worked at the National Institute of Education, Nanyang Technological University, Singapore, and was a Professor at Emirates College for Advanced Education in the United Arab Emirates. He has wide-ranging research interests in teacher education, science education, learning sciences, psychometrics, measurement, assessment, and evaluation. He is a member of the Editorial Advisory Board of several international academic journals. Throughout his career, he has published over 40 edited books. The most recent volumes include Methodology for Multilevel Modelling in Education Research: Concepts and Applications (Springer, 2022), and Rhizomatic Metaphor: Legacy of Deleuze and Guattari in Education and Learning (Springer, 2023).
Using machine learning in educational research.- Machine learning approaches to predict non-completion in AP statistics courses.- Predicting student attrition in university courses.- Machine learning based identification strategy of circumstances in the analysis of inequality of opportunity.- Machine learning applications for early and on-going warning systems in education.- Using neural networks for analyzing large-scale international assessment data.- Utilizing natural language processing and large language models in science education.- Machine based learning in psychological assessment.- Applying topic modeling to understand assessment practices of U.S. College instructors in response to the COVID-19 pandemic.- Penalized regression in educational large-scale assessments.- Applying machine learning to augment the design and assessment of immersive learning experience.- Automatic creation of concept maps to generate ‘Learning Coefficients’ in adaptive assessments.- Camelot: A council of machine learning strategies to enhance teaching.- Research on blended learning achievement improvement based on integrated machine learning methods.- Exploring non-cognitive factors affecting students’ academic performance based on PISA data: from econometrics to machine learning.- ChatGPTing the path to K12 educational reform: Examining Generative AI in the middle east from an industry perspective.- Exploring the integration of machine learning in mathematics classrooms: A literature review and recommendations for implementation.- Identification of students at risk of low performance or failure by combining enhanced machine learning, and knowledge graph techniques.
Using machine learning in educational research.- Machine learning approaches to predict non-completion in AP statistics courses.- Predicting student attrition in university courses.- Machine learning based identification strategy of circumstances in the analysis of inequality of opportunity.- Machine learning applications for early and on-going warning systems in education.- Using neural networks for analyzing large-scale international assessment data.- Utilizing natural language processing and large language models in science education.- Machine based learning in psychological assessment.- Applying topic modeling to understand assessment practices of U.S. College instructors in response to the COVID-19 pandemic.- Penalized regression in educational large-scale assessments.- Applying machine learning to augment the design and assessment of immersive learning experience.- Automatic creation of concept maps to generate 'Learning Coefficients' in adaptive assessments.- Camelot: A council of machine learning strategies to enhance teaching.- Research on blended learning achievement improvement based on integrated machine learning methods.- Exploring non-cognitive factors affecting students' academic performance based on PISA data: from econometrics to machine learning.- ChatGPTing the path to K12 educational reform: Examining Generative AI in the middle east from an industry perspective.- Exploring the integration of machine learning in mathematics classrooms: A literature review and recommendations for implementation.- Identification of students at risk of low performance or failure by combining enhanced machine learning, and knowledge graph techniques.
Using machine learning in educational research.- Machine learning approaches to predict non-completion in AP statistics courses.- Predicting student attrition in university courses.- Machine learning based identification strategy of circumstances in the analysis of inequality of opportunity.- Machine learning applications for early and on-going warning systems in education.- Using neural networks for analyzing large-scale international assessment data.- Utilizing natural language processing and large language models in science education.- Machine based learning in psychological assessment.- Applying topic modeling to understand assessment practices of U.S. College instructors in response to the COVID-19 pandemic.- Penalized regression in educational large-scale assessments.- Applying machine learning to augment the design and assessment of immersive learning experience.- Automatic creation of concept maps to generate ‘Learning Coefficients’ in adaptive assessments.- Camelot: A council of machine learning strategies to enhance teaching.- Research on blended learning achievement improvement based on integrated machine learning methods.- Exploring non-cognitive factors affecting students’ academic performance based on PISA data: from econometrics to machine learning.- ChatGPTing the path to K12 educational reform: Examining Generative AI in the middle east from an industry perspective.- Exploring the integration of machine learning in mathematics classrooms: A literature review and recommendations for implementation.- Identification of students at risk of low performance or failure by combining enhanced machine learning, and knowledge graph techniques.
Using machine learning in educational research.- Machine learning approaches to predict non-completion in AP statistics courses.- Predicting student attrition in university courses.- Machine learning based identification strategy of circumstances in the analysis of inequality of opportunity.- Machine learning applications for early and on-going warning systems in education.- Using neural networks for analyzing large-scale international assessment data.- Utilizing natural language processing and large language models in science education.- Machine based learning in psychological assessment.- Applying topic modeling to understand assessment practices of U.S. College instructors in response to the COVID-19 pandemic.- Penalized regression in educational large-scale assessments.- Applying machine learning to augment the design and assessment of immersive learning experience.- Automatic creation of concept maps to generate 'Learning Coefficients' in adaptive assessments.- Camelot: A council of machine learning strategies to enhance teaching.- Research on blended learning achievement improvement based on integrated machine learning methods.- Exploring non-cognitive factors affecting students' academic performance based on PISA data: from econometrics to machine learning.- ChatGPTing the path to K12 educational reform: Examining Generative AI in the middle east from an industry perspective.- Exploring the integration of machine learning in mathematics classrooms: A literature review and recommendations for implementation.- Identification of students at risk of low performance or failure by combining enhanced machine learning, and knowledge graph techniques.