Machine Learning in Signal Processing (eBook, ePUB)
Applications, Challenges, and the Road Ahead
Redaktion: Tanwar, Sudeep; Rameshwar, Rudra; Nayyar, Anand
46,95 €
46,95 €
inkl. MwSt.
Sofort per Download lieferbar
23 °P sammeln
46,95 €
Als Download kaufen
46,95 €
inkl. MwSt.
Sofort per Download lieferbar
23 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
46,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
23 °P sammeln
Machine Learning in Signal Processing (eBook, ePUB)
Applications, Challenges, and the Road Ahead
Redaktion: Tanwar, Sudeep; Rameshwar, Rudra; Nayyar, Anand
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Machine Learning in Signal Processing: Applications, Challenges and Road Ahead offers a comprehensive approach towards research orientation for familiarising 'signal processing (SP)' concepts to machine learning (ML).
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 24.14MB
Andere Kunden interessierten sich auch für
- Deep Learning in Gaming and Animations (eBook, ePUB)48,95 €
- Evolutionary Multi-Objective System Design (eBook, ePUB)47,95 €
- Artificial Intelligence and Deep Learning for Computer Network (eBook, ePUB)52,95 €
- Object Detection with Deep Learning Models (eBook, ePUB)47,95 €
- Machine Learning for Healthcare (eBook, ePUB)120,95 €
- Maheshkumar H KolekarIntelligent Video Surveillance Systems (eBook, ePUB)52,95 €
- Artificial Intelligence for Internet of Things (eBook, ePUB)51,95 €
-
-
-
Machine Learning in Signal Processing: Applications, Challenges and Road Ahead offers a comprehensive approach towards research orientation for familiarising 'signal processing (SP)' concepts to machine learning (ML).
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 388
- Erscheinungstermin: 9. Dezember 2021
- Englisch
- ISBN-13: 9781000487817
- Artikelnr.: 62739622
- Verlag: Taylor & Francis
- Seitenzahl: 388
- Erscheinungstermin: 9. Dezember 2021
- Englisch
- ISBN-13: 9781000487817
- Artikelnr.: 62739622
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Dr. Sudeep Tanwar (M'15, SM'21) is currently working as a Professor of the Computer Science and Engineering Department at the Institute of Technology, Nirma University, India. Dr Tanwar was a visiting Professor at Jan Wyzykowski University in Polkowice, Poland and the University of Pitesti in Pitesti, Romania. Dr Tanwar's research interests include Blockchain Technology, Wireless Sensor Networks, Fog Computing, Smart Grid, and IoT. He has authored 02 books and edited 13 books, more than 200 technical papers, including top journals and top conferences, such as IEEE TNSE, TVT, TII, WCM, Networks, ICC, GLOBECOM, and INFOCOM. He is a Senior Member of IEEE, CSI, IAENG, ISTE, CSTA, and the member of the Technical Committee on Tactile Internet of IEEE Communication Society. He is leading the ST research lab where group members are working on the latest cutting-edge technologies. Dr. Anand Nayyar received Ph.D (Computer Science) from Desh Bhagat University in 2017 in the area of Wireless Sensor Networks and Swarm Intelligence. He is currently working in Graduate School, Duy Tan University, Da Nang, Vietnam. A Certified Professional with 75+ Professional certificates from CISCO, Microsoft, Oracle, Google, Beingcert, EXIN, GAQM, Cyberoam and many more. Published 100+ Research Papers in various National International Journals (Scopus/SCI/SCIE/SSCI Indexed) with High Impact Factor. Member of more than 50+ Associations as Senior and Life Member. He is acting as Editor-in-Chief of IGI-Global, USA Journal titled " International Journal of Smart Vehicles and Smart Transportation (IJSVST)". Dr. Rudra Rameshwar (Ph.D. - IIT Roorkee, M.Tech. - IIT Roorkee, D.B.E. - EDII Ahmedabad, B.Tech. (Elect. Engg.) - DEI Agra, B.Sc. - DEI Agra) is full-time management faculty working in LMTSOM, Thapar Institute of Engineering & Technology (Deemed-to-be-University) Patiala (Punjab State), India. He is associated with core MBA specializations working in the area of "Operations, Energy & Sustainability, and Analytics". Additionally, he is working in the area of Industry 4.0, Education 4.0, Business Analytics, HR Analytics, CSR, Service Operations Management, Sustainable Development, Warehouse Management, Sustainable Business Strategies, Industrial Marketing, Technology & Innovation, Research Methodology, Data Analytics, International Management, Business Statistics, Research Design and Statistical Tools - Techniques, - Data Analysis, Interpretation - SPSS/EViews/Minitab Training, Meta-Analysis, Advanced Regression Analysis, Qualitative & Quantitative Research, Academic Publishing and Integrity. He is a Life member of Thomason Alumni Association (IIT Roorkee), Indian Science Congress Association (ISCA) Kolkata, Confederation of Indian Industry (CII) Chandigarh.
1. Introduction to Signal Processing and Machine Learning
Kavitha Somaraj
2. Learning Theory (Supervised/Unsupervised) for Signal Processing
Ruby Jain, Bhuvan Jain, and Manimala Puri
3. Supervised and Unsupervised Learning Theory for Signal Processing
Sowmya K. B.
4. Applications of Signal Processing
Anuj Kumar Singh and Ankit Garg
5. Dive in Deep Learning: Computer Vision, Natural Language Processing, and
Signal Processing
V. Ajantha Devi and Mohd Naved
6. Brain-Computer Interfacing
Paras Nath Singh
7. Adaptive Filters and Neural Net
Sowmya K. B., Chandana G., and Anjana Mahaveer Daigond
8. Adaptive Decision Feedback Equalizer Based on Wavelet Neural Network
Saikat Majumder
9. Intelligent Video Surveillance Systems Using Deep Learning Methods
Anjanadevi Bondalapati and Manjaiah D. H.
10. Stationary Signal, Autocorrelation, and Linear and Discriminant
Analysis
Bandana Mahapatra and Kumar Sanjay Bhorekar
11. Intelligent System for Fault Detection in Rotating Electromechanical
Machines.
Pascal Dore, Saad Chakkor, and Ahmed El Oualkadi
12. Wavelet Transformation and Machine Learning Techniques for Digital
Signal Analysis in IoT Systems
Rajalakshmi Krishnamurthi and Dhanalekshmi Gopinathan
Kavitha Somaraj
2. Learning Theory (Supervised/Unsupervised) for Signal Processing
Ruby Jain, Bhuvan Jain, and Manimala Puri
3. Supervised and Unsupervised Learning Theory for Signal Processing
Sowmya K. B.
4. Applications of Signal Processing
Anuj Kumar Singh and Ankit Garg
5. Dive in Deep Learning: Computer Vision, Natural Language Processing, and
Signal Processing
V. Ajantha Devi and Mohd Naved
6. Brain-Computer Interfacing
Paras Nath Singh
7. Adaptive Filters and Neural Net
Sowmya K. B., Chandana G., and Anjana Mahaveer Daigond
8. Adaptive Decision Feedback Equalizer Based on Wavelet Neural Network
Saikat Majumder
9. Intelligent Video Surveillance Systems Using Deep Learning Methods
Anjanadevi Bondalapati and Manjaiah D. H.
10. Stationary Signal, Autocorrelation, and Linear and Discriminant
Analysis
Bandana Mahapatra and Kumar Sanjay Bhorekar
11. Intelligent System for Fault Detection in Rotating Electromechanical
Machines.
Pascal Dore, Saad Chakkor, and Ahmed El Oualkadi
12. Wavelet Transformation and Machine Learning Techniques for Digital
Signal Analysis in IoT Systems
Rajalakshmi Krishnamurthi and Dhanalekshmi Gopinathan
1. Introduction to Signal Processing and Machine Learning
Kavitha Somaraj
2. Learning Theory (Supervised/Unsupervised) for Signal Processing
Ruby Jain, Bhuvan Jain, and Manimala Puri
3. Supervised and Unsupervised Learning Theory for Signal Processing
Sowmya K. B.
4. Applications of Signal Processing
Anuj Kumar Singh and Ankit Garg
5. Dive in Deep Learning: Computer Vision, Natural Language Processing, and
Signal Processing
V. Ajantha Devi and Mohd Naved
6. Brain-Computer Interfacing
Paras Nath Singh
7. Adaptive Filters and Neural Net
Sowmya K. B., Chandana G., and Anjana Mahaveer Daigond
8. Adaptive Decision Feedback Equalizer Based on Wavelet Neural Network
Saikat Majumder
9. Intelligent Video Surveillance Systems Using Deep Learning Methods
Anjanadevi Bondalapati and Manjaiah D. H.
10. Stationary Signal, Autocorrelation, and Linear and Discriminant
Analysis
Bandana Mahapatra and Kumar Sanjay Bhorekar
11. Intelligent System for Fault Detection in Rotating Electromechanical
Machines.
Pascal Dore, Saad Chakkor, and Ahmed El Oualkadi
12. Wavelet Transformation and Machine Learning Techniques for Digital
Signal Analysis in IoT Systems
Rajalakshmi Krishnamurthi and Dhanalekshmi Gopinathan
Kavitha Somaraj
2. Learning Theory (Supervised/Unsupervised) for Signal Processing
Ruby Jain, Bhuvan Jain, and Manimala Puri
3. Supervised and Unsupervised Learning Theory for Signal Processing
Sowmya K. B.
4. Applications of Signal Processing
Anuj Kumar Singh and Ankit Garg
5. Dive in Deep Learning: Computer Vision, Natural Language Processing, and
Signal Processing
V. Ajantha Devi and Mohd Naved
6. Brain-Computer Interfacing
Paras Nath Singh
7. Adaptive Filters and Neural Net
Sowmya K. B., Chandana G., and Anjana Mahaveer Daigond
8. Adaptive Decision Feedback Equalizer Based on Wavelet Neural Network
Saikat Majumder
9. Intelligent Video Surveillance Systems Using Deep Learning Methods
Anjanadevi Bondalapati and Manjaiah D. H.
10. Stationary Signal, Autocorrelation, and Linear and Discriminant
Analysis
Bandana Mahapatra and Kumar Sanjay Bhorekar
11. Intelligent System for Fault Detection in Rotating Electromechanical
Machines.
Pascal Dore, Saad Chakkor, and Ahmed El Oualkadi
12. Wavelet Transformation and Machine Learning Techniques for Digital
Signal Analysis in IoT Systems
Rajalakshmi Krishnamurthi and Dhanalekshmi Gopinathan