25,99 €
25,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
25,99 €
25,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
25,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
25,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: PDF

A much-needed guide to implementing new technology in workspaces
From experts in the field comes Machine Learning Upgrade: A Data Scientist's Guide to MLOps, LLMs, and ML Infrastructure, a book that provides data scientists and managers with best practices at the intersection of management, large language models (LLMs), machine learning, and data science. This groundbreaking book will change the way that you view the pipeline of data science. The authors provide an introduction to modern machine learning, showing you how it can be viewed as a holistic, end-to-end system-not just shiny new…mehr

Produktbeschreibung
A much-needed guide to implementing new technology in workspaces

From experts in the field comes Machine Learning Upgrade: A Data Scientist's Guide to MLOps, LLMs, and ML Infrastructure, a book that provides data scientists and managers with best practices at the intersection of management, large language models (LLMs), machine learning, and data science. This groundbreaking book will change the way that you view the pipeline of data science. The authors provide an introduction to modern machine learning, showing you how it can be viewed as a holistic, end-to-end system-not just shiny new gadget in an otherwise unchanged operational structure. By adopting a data-centric view of the world, you can begin to see unstructured data and LLMs as the foundation upon which you can build countless applications and business solutions. This book explores a whole world of decision making that hasn't been codified yet, enabling you to forge the future using emerging best practices.

  • Gain an understanding of the intersection between large language models and unstructured data
  • Follow the process of building an LLM-powered application while leveraging MLOps techniques such as data versioning and experiment tracking
  • Discover best practices for training, fine tuning, and evaluating LLMs
  • Integrate LLM applications within larger systems, monitor their performance, and retrain them on new data


This book is indispensable for data professionals and business leaders looking to understand LLMs and the entire data science pipeline.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in D ausgeliefert werden.

Autorenporträt
Kristen Kehrer has been providing innovative and practical statistical modeling solutions since 2010. In 2018, she achieved recognition as a LinkedIn Top Voice in Data Science & Analytics. Kristen is also the founder of Data Moves Me, LLC.

Caleb Kaiser is a Full Stack Engineer at Comet. Caleb was previously on the Founding Team at Cortex Labs. Caleb also worked at Scribe Media on the Author Platform Team.