Machine-to-machine (M2M) Communications (eBook, ePUB)
Architecture, Performance and Applications
Redaktion: Anton-Haro, Carles; Dohler, Mischa
Alle Infos zum eBook verschenken
Machine-to-machine (M2M) Communications (eBook, ePUB)
Architecture, Performance and Applications
Redaktion: Anton-Haro, Carles; Dohler, Mischa
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Part one of Machine-to-Machine (M2M) Communications covers machine-to-machine systems, architecture and components. Part two assesses performance management techniques for M2M communications. Part three looks at M2M applications, services, and standardization.
Machine-to-machine communications refers to autonomous communication between devices or machines. This book serves as a key resource in M2M, which is set to grow significantly and is expected to generate a huge amount of additional data traffic and new revenue streams, underpinning key areas of the economy such as the smart grid,…mehr
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Vehicular Communications and Networks (eBook, ePUB)169,95 €
- Handbook of Blind Source Separation (eBook, ePUB)91,95 €
- Thomas ChapmanHSPA Evolution (eBook, ePUB)67,95 €
- Integrated Sensing and Communications for Future Wireless Networks (eBook, ePUB)117,95 €
- Yong ZhouMachine Learning for Low-Latency Communications (eBook, ePUB)106,95 €
- Richard WatsonFixed/Mobile Convergence and Beyond (eBook, ePUB)49,95 €
- Malek BenslamaCompressed Sensing in Li-Fi and Wi-Fi Networks (eBook, ePUB)67,95 €
-
-
-
Machine-to-machine communications refers to autonomous communication between devices or machines. This book serves as a key resource in M2M, which is set to grow significantly and is expected to generate a huge amount of additional data traffic and new revenue streams, underpinning key areas of the economy such as the smart grid, networked homes, healthcare and transportation.
- Examines the opportunities in M2M for businesses
- Analyses the optimisation and development of M2M communications
- Chapters cover aspects of access, scheduling, mobility and security protocols within M2M communications
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Elsevier Science & Techn.
- Seitenzahl: 426
- Erscheinungstermin: 23. Dezember 2014
- Englisch
- ISBN-13: 9781782421108
- Artikelnr.: 42135710
- Verlag: Elsevier Science & Techn.
- Seitenzahl: 426
- Erscheinungstermin: 23. Dezember 2014
- Englisch
- ISBN-13: 9781782421108
- Artikelnr.: 42135710
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- List of contributors
- Woodhead Publishing Series in Electronic and Optical Materials
- 1: Introduction to machine-to-machine (M2M) communications
- Abstract
- Acknowledgment
- 1.1 Introducing machine-to-machine
- 1.2 The machine-to-machine market opportunity
- 1.3 Examples of commercial and experimental M2M network rollouts
- 1.4 Machine-to-machine standards and initiatives
- 1.5 Book rationale and overview
- Part One: Architectures and standards
- 2: Overview of ETSI machine-to-machine and oneM2M architectures
- Abstract
- 2.1 Introduction
- 2.2 Need and rationale for M2M standards
- 2.3 Standardized M2M architecture
- 2.4 Using M2M standards for "vertical domains, the example of the smart home
- 2.5 Conclusions and future trends for M2M standardization
- 3: Overview of 3GPP machine-type communication standardization
- Abstract
- 3.1 Introduction
- 3.2 Pros and cons of M2M over cellular
- 3.3 MTC standardization in 3GPP
- 3.4 Concluding remarks
- 4: Lower-power wireless mesh networks for machine-to-machine communications using the IEEE802.15.4 standard
- Abstract
- Acknowledgments
- 4.1 Introduction
- 4.2 The origins
- 4.3 Challenges of low-power mesh networking
- 4.4 The past
- 4.5 The present
- 4.6 The future
- 4.7 Conclusion
- 5: M2M interworking technologies and underlying market considerations
- Abstract
- 5.1 Interworking technologies for M2M communication networks: introduction
- 5.2 A panorama of heterogeneous technologies
- 5.3 From capillary to IP networks
- 5.4 Going up to the M2M cloud
- 5.5 M2M market as internetworking enabler
- 5.6 Future trends
- 6: Weightless machine-to-machine (M2M) wireless technology using TV white space: developing a standard
- Abstract
- 6.1 Why a new standard is needed
- 6.2 The need for spectrum
- 6.3 TV white space as a solution
- 6.4 Designing a new technology to fit M2M and white space
- 6.5 Weightless: the standard designed for M2M in shared spectrum
- 6.6 Establishing a standards body
- 6.7 Conclusions
- 7: Supporting machine-to-machine communications in long-term evolution networks
- Abstract
- Acknowledgments
- 7.1 Introduction to M2M in LTE
- 7.2 Main technical challenges and existing solutions
- 7.3 Integrating MTC traffic into a human-centric system: a techno-economic perspective
- 7.4 Business implications for MTC in LTE
- 7.5 Conclusions
- 2: Overview of ETSI machine-to-machine and oneM2M architectures
- Part Two: Access, scheduling, mobility and security protocols
- 8: Traffic models for machine-to-machine (M2M) communications: types and applications
- Abstract
- 8.1 Introduction
- 8.2 Generic methodology for traffic modeling
- 8.3 M2M traffic modeling
- 8.4 Model fitting from recorded traffic
- 8.5 Conclusions
- 9: Random access procedures and radio access network (RAN) overload control in standard and advanced long-term evolution (LTE and LTE-A) networks
- Abstract
- Acknowledgments
- 9.1 Introduction
- 9.2 E-UTRAN access reservation protocol
- 9.3 Extended access barring protocol
- 9.4 Alternative E-UTRAN load control principles
- 9.5 Overview of core network challenges and solutions for load control
- 9.6 Ongoing 3GPP work on load control
- 9.7 Resilience to overload through protocol re-engineering
- 9.8 Conclusion
- 10: Packet scheduling strategies for machine-to-machine (M2M) communications over long-term evolution (LTE) cellular networks
- Abstract
- 10.1 State of the art in M2M mu
- 8: Traffic models for machine-to-machine (M2M) communications: types and applications
- List of contributors
- Woodhead Publishing Series in Electronic and Optical Materials
- 1: Introduction to machine-to-machine (M2M) communications
- Abstract
- Acknowledgment
- 1.1 Introducing machine-to-machine
- 1.2 The machine-to-machine market opportunity
- 1.3 Examples of commercial and experimental M2M network rollouts
- 1.4 Machine-to-machine standards and initiatives
- 1.5 Book rationale and overview
- Part One: Architectures and standards
- 2: Overview of ETSI machine-to-machine and oneM2M architectures
- Abstract
- 2.1 Introduction
- 2.2 Need and rationale for M2M standards
- 2.3 Standardized M2M architecture
- 2.4 Using M2M standards for "vertical domains, the example of the smart home
- 2.5 Conclusions and future trends for M2M standardization
- 3: Overview of 3GPP machine-type communication standardization
- Abstract
- 3.1 Introduction
- 3.2 Pros and cons of M2M over cellular
- 3.3 MTC standardization in 3GPP
- 3.4 Concluding remarks
- 4: Lower-power wireless mesh networks for machine-to-machine communications using the IEEE802.15.4 standard
- Abstract
- Acknowledgments
- 4.1 Introduction
- 4.2 The origins
- 4.3 Challenges of low-power mesh networking
- 4.4 The past
- 4.5 The present
- 4.6 The future
- 4.7 Conclusion
- 5: M2M interworking technologies and underlying market considerations
- Abstract
- 5.1 Interworking technologies for M2M communication networks: introduction
- 5.2 A panorama of heterogeneous technologies
- 5.3 From capillary to IP networks
- 5.4 Going up to the M2M cloud
- 5.5 M2M market as internetworking enabler
- 5.6 Future trends
- 6: Weightless machine-to-machine (M2M) wireless technology using TV white space: developing a standard
- Abstract
- 6.1 Why a new standard is needed
- 6.2 The need for spectrum
- 6.3 TV white space as a solution
- 6.4 Designing a new technology to fit M2M and white space
- 6.5 Weightless: the standard designed for M2M in shared spectrum
- 6.6 Establishing a standards body
- 6.7 Conclusions
- 7: Supporting machine-to-machine communications in long-term evolution networks
- Abstract
- Acknowledgments
- 7.1 Introduction to M2M in LTE
- 7.2 Main technical challenges and existing solutions
- 7.3 Integrating MTC traffic into a human-centric system: a techno-economic perspective
- 7.4 Business implications for MTC in LTE
- 7.5 Conclusions
- 2: Overview of ETSI machine-to-machine and oneM2M architectures
- Part Two: Access, scheduling, mobility and security protocols
- 8: Traffic models for machine-to-machine (M2M) communications: types and applications
- Abstract
- 8.1 Introduction
- 8.2 Generic methodology for traffic modeling
- 8.3 M2M traffic modeling
- 8.4 Model fitting from recorded traffic
- 8.5 Conclusions
- 9: Random access procedures and radio access network (RAN) overload control in standard and advanced long-term evolution (LTE and LTE-A) networks
- Abstract
- Acknowledgments
- 9.1 Introduction
- 9.2 E-UTRAN access reservation protocol
- 9.3 Extended access barring protocol
- 9.4 Alternative E-UTRAN load control principles
- 9.5 Overview of core network challenges and solutions for load control
- 9.6 Ongoing 3GPP work on load control
- 9.7 Resilience to overload through protocol re-engineering
- 9.8 Conclusion
- 10: Packet scheduling strategies for machine-to-machine (M2M) communications over long-term evolution (LTE) cellular networks
- Abstract
- 10.1 State of the art in M2M mu
- 8: Traffic models for machine-to-machine (M2M) communications: types and applications